List of innovations by the CoEs, spotted by the EU innovation radar

idea-diego1100x350
The EU Innovation Radar aims to identify high-potential innovations and innovators. It is an important source of actionable intelligence on innovations emerging from research and innovation projects funded through European Union programmes. 
 
These are the innovations from the HPC Centres of Excellence as spotted by the EU innovation radar:
 
bioexcel-logo

Title: GROMACS, a versatile package to perform molecular dynamics
Market maturity: Exploring
Project: BioExcel
Innovation Topic: Excellent Science
KUNGLIGA TEKNISKA HOEGSKOLAN - SWEDEN

Cheese_logo

Title: Urgent Computing services for the impact assessment in the immediate aftermath of an earthquake
Market maturity: Tech Ready
Market creation potential: High
Project: ChEESE
Innovation Topic: Excellent Science
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH - SWITZERLAND
BULL SAS - FRANCE

compbiomed_long_logo
ecam-300x238
eocoe
esiways logo_type_grey_left copy

Table: New coupled earth system model
Market maturity: Tech Ready
Project: ESiWACE
Innovation Topic: Excellent Science
BULL SAS - FRANCE
MET OFFICE - UNITED KINGDOM
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS - UNITED KINGDOM
 

Excellerat_Logo_ELR_V1_20180209-01-300x106

Title: In-Situ Analysis of CFD Simulations
Market maturity: Tech Ready
Market creation potential: High
Project: Excellerat
Innovation Topic: Excellent Science
KUNGLIGA TEKNISKA HOEGSKOLAN - SWEDEN
FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. - GERMAN

Title: Interactive in situ visualization in VR
Market maturity: Tech Ready
Market creation potential: High
Project: Excellerat
Innovation Topic: Excellent Science
UNIVERSITY OF STUTTGART - GERMANY

Title: Machine Learning Methods for Computational Fluid Dynamics (CFD) Data
Market maturity: Tech Ready
Market creation potential: Noteworthy
Project: Excellerat
Innovation Topic: Excellent Science
KUNGLIGA TEKNISKA HOEGSKOLAN - SWEDEN
FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. - GERMAN

MaX-logo-without-subline

Title: Quantum Simulation as a Service
Market maturity: Exploring
Market creation potential: Noteworthy
Project: MaX
Innovation Topic: Excellent Science
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH - SWITZERLAND
CINECA CONSORZIO INTERUNIVERSITARIO - ITALY

NOMAD_Logo_srgb_web_whigh
pop250

Success Story: AiiDA Platform Accelerates Materials Discovery

Highlighted Centre of Excellence

MAX (MAterials design at the eXascale) is a European Centre of Excellence which enables materials modelling, simulations, discovery and design at the frontiers of the current and future High Performance Computing (HPC), High Throughput Computing (HTC) and data analytics technologies. >> Learn more about MAX

Quick Summary

  • Industry Sector Involved:

    Materials for energy

  • Software and hardware used:

    AiiDA (Automated Interactive Infrastructure and DAtabase for computational science), developed by MaX CoE and partners, including NCCR MARVEL and Bosch Research, on the Piz Daint supercomputer at Swiss National Supercomputing Centre (CSCS).

  • Challenge:

    Finding new candidate materials for application as solid-state electrolytes in next generation batteries.

  • Solution:

    A simple and efficient framework to predict the diffusion of lithium ions (Li ions) in solid-state materials, then using the AiiDA platform to employ it in a large-scale computational screening.

Organisations Involved:

NCCR MARVEL is a center on Computational Design and Discovery of Novel Materials created by the Swiss National Science Foundation in May 2014. MARVEL targets the accelerated design and discovery of novel materials, via a materials’ informatics platform of database-driven high-throughput quantum simulations, powered by:

  • advanced electronic-structure capabilities, for predictive accuracy
  • innovative sampling methods to explore configuration/composition space
  • application of big-data concepts to computational materials science.


Bosch Research and Technology Center: Founded in 1999, the North American division of Corporate Research at Bosch has been shaping the technology of Bosch’s future for nearly 20 years. The team has worked in close collaboration with its colleagues and counterparts in Germany and around the world. The center is committed to providing technologies and systems for the four business sectors of Bosch — Mobility Solutions, Energy and Building Technology, Industrial Technology and Consumer Goods – by scouting and collaborating with top universities and industry partners in North America.

CHALLENGE:​

Solid-state electrolytes have the potential to enhance both safety and performance of Li-ion batteries, allowing for novel cathode and anode chemistry, preventing the growth of Li–metal dendrites — the needle-like formations of lithium that grow inside batteries, causing devices to lose power more quickly, short out, or sometime even catch fire — and pushing the miniaturization of battery cells. 

Despite intense research in this field for decades though, no known solid-state ionic conductor satisfies all the requirements needed for battery applications. This makes the search for new materials a worthwhile endeavor. Computational approaches in the search for new materials are less human-intensive and easily parallelizable and precede synthesis and characterization in the laboratory. Computational screening relies on simulations of the electronic structure, to determine the insulating character of a material, and molecular dynamics simulations to predict the Li-ion diffusion coefficients. 

Overall, thousands of calculations need to be performed, making automatization and reproducibility a key requirement. In addition, methods need to be computationally inexpensive enough to be run on thousands of materials, yet accurate enough to be predictive.

SOLUTION:​

We first reduced the computational burden of modelling the potential energy surface of lithium diffusing in a solid-state ionic conductor to develop a workable framework. We then demonstrated a procedure for running these extensive molecular dynamics simulations in a largescale computational screening. AiiDA made this possible by allowing the automation and explicit storage of the provenance. The novelty of AiiDA in the field of materials informatics is that every calculation is stored as a node in a graph, with input data forming incoming nodes, and output data stored as outcoming nodes, that can again be input to a different calculation. 

In addition, AiiDA allows for a high degree of automation and parallelization via its daemon. Every calculation presented in the paper “High-throughput computational screening for solid-state Li-ion conductors” was run with AiiDA.

Business impact:

We found five materials with fast ionic diffusion, some in the range of the well-known superionic conductor Li10GeP2S12, such as for example the Li-oxide chloride Li5Cl3O, the doped halides Li2CsI3, LiGaI4, and LiGaBr3, or the Li-tantalate Li7TaO6. In addition, we found 40 materials that show significant diffusion at 1000 K, though they will need to be investigated more thoroughly before their suitability can be determined. All of these potential fast-ionic conductors could be studied further, in more detail, by experiment and simulation, and could result in new fast-ionic conductors or even electrolytes for next generation solid-state Li-ion batteries. Our data could also serve to search for descriptors of fast ionic conduction, which would be of significant interest to the community.

This work benefits society by identifying inorganic solid-state lithium-ionic conductor compounds that could be used as electrolytes to mitigate or overcome the severe safety challenges posed by the use of volatile and flammable liquid or polymer electrolytes in today’s Li-ion batteries. Complete replacement of the liquid electrolyte by a solid ceramic would result in an all-solid-state Li-ion battery, highly beneficial due to the higher electrochemical stability of inorganic electrolytes, compared to their organic counterparts.

 

Benefits for further research:

  • We developed efficient ways of simulating the diffusion of lithium in the solid state and gained physical insight into how charge-density rearrangements or lattice vibrations affect it.
  • We developed a framework for predicting the diffusion of Li ions in solid-state materials and a process for applying it in largescale computational screening.
  • We identified new ceramic compounds for in-depth experimental investigation

Related Images :

The figure shows a schematic representation of the screening funnel. Structures from experimental repositories go sequentially through several computational filters. Each stage of the screening discards unsuitable structures based on properties ever more complex to calculate. The final outcome is of a few tens of viable structures that could be potential candidates for novel solid-state Li-ion conductors.

ETP4HPC handbook 2020 released

6. November 2020

The 2020 edition of the ETP4HPC Handbook of HPC projects is available. It offers a comprehensive overview over the European HPC landscape that currently consists of around 50 active projects and initiatives. Amongst these are the 14 Centres of Excellence and FocusCoE, that are also represented in this edition of the handbook.

>> Read here

EXCELLERAT, MaX and POP at the International CAE Conference 2020

20. October 2020

   

The three HPC centres of excellence EXCELLERAT, POP and MaX will participate at the 36th edition of the International CAE conference 2020, that will be held online from 30th November until 3rd December 2020.

Under the topic “At the epicentre of the digital transformation of industry”, high-performance computing is a key enabler for this digital transformation and will be presented at a dedicated collateral event on Wednesday, December 2nd at 14:00h CET. 

In this session, the technical director of EXCELLERAT Amgad Dessoky will present a session titled “EXCELLERAT: paving the way for the evolution towards Exascale”. The EXCELLERAT activity brings together European experts to establish a Centre of Excellence (CoE) in Engineering Applications on HPC with a broad service portfolio, paving the way for the evolution towards Exascale. The aim is to solve highly complex and costly engineering problems, and create enhanced technological solutions even at the development stage.

In the exhibition, MaX and EXCELLERAT will have a joint virtual booth together to show their latest results. The virtual format makes it possible to interact with both CoEs via video and chat. The booth will visible for three months after the event. 

POP CoE will als obe present at the event with a virtual booth to exhibit its latest research results. 

>> CAE Conference Website