
Intel® oneAPI
Performance Analysis Tools

2

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

3

Analysis Tools Overview

Intel® VTune™
Profiler

Performance Profiler

Intel® Inspector
Memory & Thread Debugger

Intel® Advisor
Design and optimize

vectorization, threading,
accelerator offload and flow

graphs.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Optimize Performance with

Intel® VTune™ Profiler

5

Optimize Performance
Intel® VTune™ Profiler

Get the Right Data to Find Bottlenecks
▪ A suite of profiling for CPU, GPU, FPGA, threading,

memory, cache, storage, offload, power…

▪ DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix

▪ Linux, Windows, FreeBSD, Android, Yocto and more

Analyze Data Faster
▪ See data on your source, in architecture diagrams, as

a histogram, on a timeline…

▪ Filter and organize data to find answers

Work Your Way
▪ User interface or command line

▪ Profile locally and remotely

▪ Install as an application

▪ Install as a server accessible with a web browser

6

Rich Set of Profiling Capabilities for Multiple Markets
Intel® VTune™ Profiler

7

Two Great Ways to Collect Data
Intel® VTune™ Profiler

Software Collector Hardware Collector

Uses OS interrupts Uses the on-chip Performance Monitoring Unit (PMU)

Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution ~1ms default resolution (finer granularity - finds small functions)

Either an Intel® or a compatible processor Requires a genuine Intel® processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in virtual environments
Works in a VM only when supported by the VM

(e.g., vSphere*, KVM)

No driver required Uses Intel driver or perf if driver not installed

No special recompiles - C, C++, DPC++, C#, Fortran, Java, Python, Assembly

8

Find Answers Fast
Intel® VTune™ Profiler

Double Click Function
to View Source

Adjust Data Grouping

… (Partial list shown)

Click [] for Call Stack

Filter by Timeline Selection
(or by Grid Selection)

Filter by Process
& Other Controls

Tuning Opportunities Shown in Pink.
Hover for Tips

9

See Profile Data On Source / Asm
Double Click from Grid or Timeline

Right click for instruction reference manualView Source / Asm or both CPU Time

Click jump to scroll Asm

Quick Asm navigation:
Select source to highlight Asm

Scroll Bar “Heat Map” is an overview of hot spots

10

Timeline Visualizes Thread Behavior
Intel® VTune™ Profiler

▪ Optional: Use API to mark frames and user tasks

▪ Optional: Add a mark during collection

CPU Time

Hovers:

Transitions
Basic Hotspots Advanced HotspotsLocks & Waits

11

Command Line Interface
Automate analysis

▪ Set up the environment variables:
–Windows: <install-dir>\env\vars.bat
–Linux: <install-dir>/env/vars.sh

Help: vtune –help

Use UI to setup
1) Configure analysis in UI
2) Press “Command Line…” button
3) Copy & paste command

Great for regression analysis – send results file to developer
Command line results can also be opened in the UI

12

Default Intel® VTune™ Profiler Install Directories

In Intel® oneAPI Base Toolkit:

▪Windows: [Program Files]\Intel\oneAPI\vtune\<version>

▪Linux: /opt/intel/oneapi/vtune/<version>

Standalone:

▪Windows: [Program Files]\IntelSWTools\VTune Profiler <version>

▪Linux: /opt/intel/vtune_profiler_version

On Apple* macOS* systems:

▪/Applications/Intel VTune Profiler <version>.app

13

Interactive Remote Data Collection
Performance analysis of remote systems just got a lot easier

Interactive analysis
1) Configure SSH to a remote Linux* target

2) Choose and run analysis with the UI

Command line analysis
1) Run command line remotely on Windows*

or Linux* target

2) Copy results back to host and open in UI

Conveniently use your local UI to analyze remote systems

14

Intel® VTune™ Profiler
Faster, Scalable Code Faster

Get the Data You Need
▪ Hotspot (Statistical call tree), Call counts (Statistical)

▪ Thread Profiling – Concurrency and Lock & Waits Analysis

▪ Cache miss, Bandwidth analysis…1

▪ GPU Offload and OpenCL™ Kernel Tracing

Find Answers Fast
▪ View Results on the Source / Assembly

▪ OpenMP Scalability Analysis, Graphical Frame Analysis

▪ Filter Out Extraneous Data – Organize Data with Viewpoints

▪ Visualize Thread & Task Activity on the Timeline

Easy to Use
▪ No Special Compiles – C, C++, C#, Fortran, Java, Python, ASM

▪ Visual Studio* Integration or Stand Alone

▪ Local & Remote Data Collection, Command Line

▪ Analyze Windows* & Linux* data on macOS

1 Events vary by processor. 2 No data collection on OS X*

Quickly Find Tuning Opportunities

See Results On The Source Code

Visualize & Filter Data

Tune OpenMP Scalability

15

Intel® VTune™ Profiler

GPU Profiling

16

™

▪

▪

▪

▪

▪

▪

▪

▪

17

GPU Offload Profiling
Intel® VTune™ Profiler

▪

▪

18

18

19

GPU Hotspots: Aggregated and Overtime Views

20

▪

▪ ™

▪

-

-

▪

20

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

21

Intel® VTune™ Profiler

Memory Analysis

22

What’s Using All The Memory?
Memory Consumption Analysis

See What Is Allocating Memory
▪ Lists top memory consuming functions

and objects
▪ View source to understand cause
▪ Filter by time using the memory

consumption timeline

Standard & Custom Allocators
▪ Recognizes libc malloc/free, memkind

and jemalloc libraries
▪ Use custom allocators after

markup with ITT Notify API

Languages
▪ Python*
▪ Linux*: Native C, C++, Fortran

Native language support is not currently available for Windows*

Intel® Vtune™ Profiler -

23

Optimize Memory Access
Memory Access Analysis - Intel® VTune™ Profiler

Tune data structures for performance

▪ Attribute cache misses to data structures
(not just the code causing the miss)

▪ Support for custom memory allocators

Optimize NUMA latency & scalability
▪ True & false sharing optimization

▪ Auto detect max system bandwidth

▪ Easier tuning of inter-socket bandwidth

Easier install, Latest processors
▪ No special drivers required on Linux*

▪ Intel® Xeon Phi™ processor MCDRAM (high
bandwidth memory) analysis

24

Memory Access Analysis
Intel® VTune™ Profiler

Tune data structures
for better performance

▪ Attribute cache misses to data structures

Better Bandwidth Analysis
for Non-Uniform Memory

▪ See Read & Write contributions
to Total Bandwidth

▪ Easier tuning of multi-socket bandwidth

Seeing total bandwidth can suggest data blocking opportunities
to change a bandwidth bound app into a compute bound app.

25

Intel® VTune™ Profiler

Demo

Design your code for high-performance with

Intel® Advisor

2727

®

™ ™™ ™ ™

http://www.intel.com/PerformanceIndex

28

®

http://www.intel.com/PerformanceIndex

29

“Automatic” Vectorization Often Not Enough
A good compiler can still benefit greatly from vectorization optimization

▪ Compiler will not always vectorize

• Check for Loop Carried Dependencies
using Intel® Advisor

• All clear? Force vectorization.
C++ use: pragma simd, Fortran use: SIMD directive

▪ Not all vectorization is efficient vectorization

• Stride of 1 is more cache efficient than stride of 2
and greater. Analyze with Intel® Advisor.

• Consider data layout changes
Intel® SIMD Data Layout Templates can help

Benchmarks on prior slides did
not all “auto vectorize.” Compiler
directives were used to force
vectorization and get more
performance.

Arrays of structures are great for
intuitively organizing data, but are
much less efficient than
structures of arrays. Use the
Intel® SIMD Data Layout
Templates (Intel® SDLT) to map
data into a more efficient layout
for vectorization.

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt

30

Faster Code Faster with Data Driven Design
Intel® Advisor – Vectorization Optimization and Thread Prototyping

▪ Breakthrough for Threading Design:
• Quickly prototype multiple options
• Project scaling on larger systems
• Find synchronization errors before

implementing threading
• Design without disrupting development

http://intel.ly/advisor-xePart of Intel® Parallel Studio for Windows* and Linux*
Less Effort, Less Risk and More Impact

▪ Faster Vectorization Optimization:
• Vectorize where it will pay off most
• Quickly ID what is blocking vectorization
• Tips for effective vectorization
• Safely force compiler vectorization
• Optimize memory stride

http://intel.ly/advisor-xe

31

Get Faster Code Faster! Intel® Advisor
Thread Prototyping

▪Have you:
• Threaded an app, but seen little benefit?

• Hit a “scalability barrier”?

• Delayed release due to sync. errors?

▪Data Driven Threading Design:
• Quickly prototype multiple options

• Project scaling on larger systems

• Find synchronization errors before implementing threading

• Design without disrupting development
“Intel® Advisor has allowed us to quickly
prototype ideas for parallelism, saving
developer time and effort”

Simon Hammond

Senior Technical Staff

Sandia National Laboratories

Add Parallelism with Less Effort,
Less Risk and More Impact

32

Get Faster Code Faster! Intel® Advisor
Vectorization Optimization

▪ Have you:
• Recompiled for AVX2 with little gain

• Wondered where to vectorize?

• Recoded intrinsics for new arch.?

• Struggled with compiler reports?

▪ Data Driven Vectorization:
• What vectorization will pay off most?
• What’s blocking vectorization? Why?
• Are my loops vector friendly?
• Will reorganizing data increase

performance?
• Is it safe to just use pragma simd?

"Intel® Advisor’s Vectorization Advisor
permitted me to focus my work where it
really mattered. When you have only a
limited amount of time to spend on
optimization, it is invaluable."

Gilles Civario

Senior Software Architect

Irish Centre for High-End Computing

33

Vector Instructions are Dramatically Faster
Multiple arithmetic operations with a single instruction

Adding 2
vectors

• These instructions are also referred to as Single Instruction
Multiple Data (SIMD instructions)

+

=

34

Intel® Advanced Vector Extensions (Intel® AVX)

Intel®

AVX2

8x floats

4x doubles

Intel®

AVX

32x bytes

16x 16-bit shorts

8x 32-bit integers

4x 64-bit integers

2x 128-bit(!) integer

Vector length –
the number of
elements that
can processed

35

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

Filter by which loops
are vectorized!

Focus on
hot loops

What vectorization
issues do I have?

How efficient
is the code?

What prevents
vectorization?

Which Vector instructions
are being used?

Trip Counts

Get Faster Code Faster!

36

Intel® Advisor

Roofline Analysis

37

What is a Roofline Chart?

▪A Roofline Chart plots application performance against hardware
limitations.

• Where are the bottlenecks?

• How much performance is
being left on the table?

• Which bottlenecks can be
addressed, and which should
be addressed?

• What’s the most likely cause?

• What are the next steps?

Roofline first proposed by University of California at Berkeley: Roofline: An Insightful
Visual Performance Model for Multicore Architectures, 2009

Cache-aware variant proposed by University of Lisbon: Cache-Aware Roofline Model:
Upgrading the Loft, 2013

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

38

Roofline Metrics

▪ Roofline is based on FLOPS and Arithmetic Intensity (AI).

• FLOPS: Floating-Point Operations / Second

• Arithmetic Intensity: FLOP / Byte Accessed
Low AI High AI

Runs system benchmarks and collects timing data.

Shortcut to run Survey followed by Trip Counts + FLOPs

Collects memory traffic and FLOP data.

Must be run separately due to higher overhead that
would interfere with timing measurements.

Collecting this
information in
Intel® Advisor
requires two
analyses.

SpMV FFTs N-body

39

Classic vs. Cache-Aware Roofline

▪ Intel® Advisor uses the Cache-Aware Roofline model, which has a different definition of
Arithmetic Intensity than the original (“Classic”) model.

• Traffic measured from one level of memory (usually DRAM)

• AI may change with data set size

• AI changes as a result of memory optimizations

Classical Roofline

• Traffic measured from all levels of memory

• AI is tied to the algorithm and will not change with data set size

• Optimization does not change AI*, only the performance

Cache-Aware Roofline

*Compiler optimizations may modify the algorithm, which may change the AI.

40

Plotting a Roofline Chart

A Roofline Chart uses AI as its X
axis and FLOPS as its Y axis.

The maximum FLOPS as a product of
ops/byte (AI) and maximum bytes

supplied per second is a diagonal line.

A loop or
function can
be plotted as

a point on
the graph.

The CPU’s
maximum
FLOPS can

be plotted as
a horizontal

line.

FLOPS

Arithmetic Intensity
FLOP/Byte

41

Ultimately
Compute-Bound

Ultimately
Memory-Bound

Ultimate Performance Limits

FLOPS

Arithmetic Intensity
FLOP/Byte

Performance cannot exceed the
machine’s capabilities, so each loop is
ultimately limited by either compute

or memory capacity.

42

Vector with FMAs

Vector

Scalar

Sub-Roofs and Current Limits

FLOPS

Arithmetic Intensity
FLOP/Byte

Additional
roofs can be
plotted for

specific
computation

types or
cache levels.

These sub-
roofs can be
used to help

diagnose
bottlenecks.

43

The Intel® Advisor Roofline Interface

• Roofs are based on benchmarks run
before the application.

• Roofs can be hidden, highlighted, or
adjusted.

• Intel® Advisor has size- and color-
coding for dots.

• Color code by duration or
vectorization status

• Categories, cutoffs, and visual style
can be modified.

44

Identifying Good Optimization Candidates

▪ Focus optimization effort
where it makes the most
difference.

• Large, red loops have the
most impact.

• Loops far from the upper
roofs have more room to
improve.

45

Intel® Advisor

Offload Advisor

46

Intel® Advisor - Offload Advisor

Starting from an optimized
binary (running on CPU):

▪ Helps define which sections
of the code should run on a
given accelerator

▪ Provides performance
projection on accelerators

47

Intel® Advisor - Offload Advisor
Find code that can be profitably offloaded

Speedup of
accelerated
code 1.8 x

48

How to Run Intel® Advisor – Offload Advisor

▪ source <advisor_install_dir>/advixe-vars.sh

▪ advixe-python $APM/collect.py advisor_project --config gen9 --

/home/test/matrix

▪ advixe-python $APM/analyze.py advisor_project --config gen9 --out-dir

/home/test/analyze

▪ View the report.html generated (or generate a command-line report)
Analyze for a specific

GPU config

49

Compare Acceleration on Different GPUs

Gen9 – Not profitable
to offload kernel

Gen11 – 1.6x speedup

50

Intel® Advisor

Demo

Deliver reliable applications with

Intel® Inspector

52

Threading, Memory and Persistence Debugger
Intel® Inspector

53

Race Conditions Are Difficult to Diagnose
They only occur occasionally and are difficult to reproduce

Thread 1 Thread 2
Shared
Counter

0

Read count  0

Increment 0

Write count ➔ 1

Read count  1

Increment 1

Write count ➔ 2

Thread 1 Thread 2
Shared
Counter

0

Read count  0

Read count  0

Increment 0

Increment 0

Write count ➔ 1

Write count ➔ 1

Correct Answer Incorrect Answer

54

Intel® Inspector
Find & Debug Memory and Threading Errors

▪ Correctness Tools Increase ROI by 12%-21%1

• Errors found earlier are less expensive to fix

• Races & deadlocks not easily reproduced

• Memory errors are hard to find without a tool

▪ Faster Diagnosis with Debugger Breakpoints

• Breakpoint set just before the problem occurs

• Examine variables and threads with the debugger

▪ Debug Persistent Memory Errors
• Missing cache flushes / store fences and more

▪ New in 2021 release:
• Preview: Memory and threading errors analysis for DPC++

and OpenMP offloaded codes, executed on CPU target.

1Cost Factors – Square Project Analysis - CERT: U.S. Computer Emergency Readiness Team, and
Carnegie Mellon CyLab NIST: National Institute of Standards & Technology: Square Project Results

55

Debug Memory & Threading Errors
Intel® Inspector

▪ Find and eliminate errors

• Memory leaks, invalid access…

• Races & deadlocks

• C, C++ and Fortran (or a mix)

▪ Simple, Reliable, Accurate

• No special recompiles

Use any build, any compiler1

• Analyzes dynamically generated or linked code

• Inspects 3rd party libraries without source

• Productive user interface + debugger integration

• Command line for automated regression analysis Fits your existing process

Clicking an error instantly displays source
code snippets and the call stack

1Compilers that follows common OS standards.

56

Productive User Interface Saves Time
Intel® Inspector

Problem States:
New, Not Fixed,
Fixed, Confirmed,
Not a problem,
Deferred,
Regression

Filters let you
focus on a
module, or
error type, or
just the new
errors or…

Code
snippets
displayed
for
selected
problem

Select a
problem
set

57

Double Click for Source & Call Stack
Intel® Inspector

Source code
locations
displayed for
selected
problem

Call
Stack

58

Easy Problem Management
Quickly see new problems and regressions

State Description

New Detected by this run

Not Fixed Previously seen error detected by this run

Not a Problem Set by user (tool will not change)

Confirmed Set by user (tool will not change)

Fixed Set by user (tool will change)

Regression Error detected with previous state of “Fixed”

59

Filtering - Focus on What’s Important
Example: See only the errors in one source file

(1) Filter – Show only
one source file

Before – All Errors After – Only errors from one source file

Tip: Set the “Investigated” filter to “Not investigated” while investigating problems.
This removes from view the problems you are done with, leaving only the ones left to investigate.

(2) Error count drops

60

Incrementally Diagnose Memory Growth
Intel® Inspector

Speed diagnosis of difficult to find heap errors

Memory usage graph
plots memory growth

Select a cause of
memory growth

As your app is running…

See the code snippet
& call stack

61

Automate Regression Analysis
Command Line Interface

Send results file to developer to analyze with the UI

▪ inspxe-cl is the command line:
– Windows: C:\Program Files\Intel\Inspector XE \bin[32|64]\inspxe-cl.exe

– Linux: /opt/intel/inspector_xe/bin[32|64]/inspxe-cl

▪ Help:
inspxe-cl –help

▪ Set up command line with GUI

▪ Command examples:
1.inspxe-cl -collect-list

2. inspxe-cl –collect ti2 -- MyApp.exe

3. inspxe-cl –report problems

62

Break At Just The Right Time
Intel® Inspector - Memory & Thread Debugger

Save time. Find and diagnose errors with less effort.

▪ Break into the debugger just before the error occurs.

▪ Examine the variables and threads.

▪ Diagnose the problem.

Memory Errors Threading Errors

63

Productive Memory & Threading Debugger
Intel® Inspector Memory

Analysis
Threading
Analysis

View Context of Problem
Stack
Multiple Contributing Source Locations

✓

✓

✓

✓

Collapse multiple “sightings” to one error
(e.g., memory allocated in a loop, then leaked is 1 error)

✓ ✓

Suppression, Filtering, and Workflow Management ✓ ✓

Visual Studio* Integration (Windows*) ✓ ✓

Command line for automated tests ✓ ✓

Timeline visualization ✓ ✓

Memory Growth during a transaction ✓

Trigger Debugger Breakpoint ✓ ✓

Easier & Faster Debugging of Memory & Threading Errors

64

