Intel® oneAPI
Performance Analysis Tools

Dmitry Tarakanov
Technical Consulting Engineer

intel.

Notices & Disclaimers

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available
updates. See configuration disclosure for details.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

intel.

2

http://www.intel.com/PerformanceIndex

Analysis Tools Overview

T

Intel® VTune™

Profiler
Performance Profiler

Intel® Advisor

Design and optimize
vectorization, threading,
accelerator offload and flow
graphs.

Intel® Inspector
Memory & Thread Debugger

intel.

3

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

Optimize Performance with
Intel® VTune™ Profiler

intel.

ALGORITHM @ MICROARCHITECTURE

Performance

Snapshot
: : (0 o O
Hotspots Memory Anomaly Microarchitecture Memory
Consumption Detection Exploration Access

® ™ : PARALLELISM I/0
Intel® VTune™ Profiler
@ o
Threading Perfs:r?ance Input and Output
Get the Right Data to Find Bottlenecks
_ f f|_ f CPU GPU FPGA th d ACCELERATORS PLATFORM ANALYSES
= A suite of profiling for readin
profiing ISR & © © ®@ @ O
memory, cache, storage, offload, power... Offoad ComputeMedia ibragtion e T
= DPC++, C, C++, Fortran, Python*, Go*, Java*, or a mix :
= Linux, Windows, FreeBSD, Android, Yocto and more | souce [JFEREREY e o
B & GPU Instructions Executed by Instruction T..*
Control Flow Send & Wai
Analyze Data Faster .Int?:é&SPFIcat :IntBrl&DF‘lzloat # Other
. . . [0] [75,002,500 I []
= See data on your source, in architecture diagrams, as (1) 12,500,000
[2] [4 12,500,000

a histogram, on a timeline...
= Filter and organize data to find answers

Work Your Way |
= User interface or command line e £ [|
= Profile locally and remotely B - i e — T
» |nstall as an application
» |nstall as a server accessible with a web browser

intel.

5

Rich Set of Profiling Capabilities for Multiple Markets

Intel® VTune™ Profiler

®VV\—@ @ @

Single Thread Multithreaded
Optimize single-threaded Effectively use all available cores.
performance.
HPC & CLoud Memory & Storage
Management

Access specialized, in-depth
analyses for HPC and cloud
computing.

Diagnose memory, storage, and
data plane bottlenecks.

[l

System

See a system-level view of
application performance.

"

Analyze & Filter Data

Mine data for answers.

Media & OpenCL™ Applications

Deliver high-performance image
and video processing pipelines.

™
oo

Environment

Fits your environment and
workflow.

intel.

6

Two Great Ways to Collect Data

Intel” VTune™ Profiler

Software Collector Hardware Collector
Uses OS interrupts Uses the on-chip Performance Monitoring Unit (PMU)
Collects from a single process tree Collect system wide or from a single process tree.
~10ms default resolution ~1ms default resolution (finer granularity - finds small functions)
Either an Intel” or a compatible processor |Requires a genuine Intel” processor for collection
Call stacks show calling sequence Optionally collect call stacks

Works in a VM only when supported by the VM
(e.g., vSphere*, KVM)

No driver required Uses Intel driver or perf if driver not installed

Works in virtual environments

No special recompiles - C, C++, DPC++, C#, Fortran, Java, Python, Assembly

intel.

Find Answers Fast

Intel” VTune™ Profiler
Adjust Data Grouping

Function / Call Stack
Source Function / Function / Call Stack
Sync Qbject / Function / Call Stack

Sync Qbject / Thread / Function / Call Stack
... (Partial list shown)

Double Click Function
to View Source

Click [»] for Call Stack

Filter by Timeline Selection
(or by Grid Selection)

Z£oom In And Filter On Selection
Filter In by Selection h

Rermowe All Filters

Hotspots Hotspots by CPU Utilization + @ 1) INTEL VTUNE PROFILER

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

* Grouping:| Function / Call Stack T @

CPU Time
B Qverhzad Time

Function / Call Stack Effective Time by Utilization ¥
B idie @ Poor Ok B ldeal @ Over

| _grid intersect

Spin Time

Creation

sphere_intersect 3.748= D [] 0s 0s 0s 03 03
grid_intersect 3748 D [] 0s 0s 0s 0s 0s
intersect_objects || 3.580s (D [] 0s 0s 0s 0s 0s
= grid_intersect —|| 0.168s |l 20215 0s 0s 03 03
func@0x69e19df0 2. 467s 0s 0s 0s 0s 0s
p : + mm W W (335 345 B8s BEs Oz 92s 04 Bs B.Es 10s 10.2s 10.4s10.8s ¢ | Thread -
2| WinMainCRTStartup (TID: 2... «| [l Running
=z ¥ wa CPU Time
OMP Master Thread #0 (TI..
= faster Thres (#| gy Spin and Overhe. ..
OMP Worker Thread #2 (TI. . @ CPU Sample
CPU Utilization
CPU Utilization | gy CPU Time
#| g Spin and Overhe. ..
FILTER 100.0% % Any Proce hread * | | Any Modv AnyU User functi ¥ | | Function ¥ Show inli v

Filter by Process Tuning Opportunities Shown in Pink.
& Other Controls Hover for Tips

intel.

8

See Profile Data On Source / Asm

Double Click from Grid or Timeline

View Source / Asm or both CPU Time Right click for instruction

1|
b

M= & & b ssembly grouping: | Address T 0
Source ¥ CPU Time: Total Address A | Sour... | Assembly % CPUTime: 1 &
TMEX.X T— LCO=lcd.X; U OULS | URAUUCos a7y To]=BRN}: & 0w [s & 3] IOCRE o3 U247 i
565 curpos = n¥p; 0x40dchf lock 44:
s e e fm AT e Ox40dchf 572 3t e=zi, esi 0.007s
QUle Asm naV|gat|On . 0x40dcc1 | 572 0x404407 <Block 50>
0x40dcc3 lock 45:
S I t t h = h I = ht A 0x40dcc3 573 mov eax, dword ptr [esi+0x4] 0.093s |
e eC Sou rce O Ig Ig Sm 02655 B Ox40dcce ar3 mov ecx, dword ptr [edi+0x10] 0.750s
571 cur = g-rcells[voxindex]; Ox40dcc9 ar3 mov edx, dword ptr [edit+0xc] 0.020s |
572 while (cur !'= NULL)} { 0.007s | 0Ox40dccc ar3 mov eax, dword ptr [eax] 0.055s l
if (ry—>mbox[cur->obj—>id] != » 21058s Ox40dcce ar3 cmp dword ptr [ecxteax*4], edx| 1.177s
574 ry->mbox[cur->chj-»id] = ry->|| 0.604s [l 0Ox40dcdi 573 0.003s
575 cur-»chj-»metheds->intersect (|| 0.687s D 0x40dcd3 Block 46:
576 } Ox40dcd3 574 mov dword p scx+eax*4], edx|| 0.604s (D
577 cur = cur->next; 0423 B Ox40dcde 575 mov eax, dwolll ptr [esi+0x4] 01755 @ B
578 1 Ox40dcd9 575 push edi 0.005s
579 CUrvcox.z += step.z; 0.019s | Ox40dcda 575 push =ax 0.004s =
580 if (ry-rmaxdist < tmax.z || curvol 0.011s | = (x40dcdb ST mov ecx, dworfptr [eax+0=xE8] 0.027s | =
581 break; : Ox40dcde 575 mov eax, dworf@ptr [scx] 0.130s @
582 voxindex += step.z¥g-rxsizevg->ys| 0.006s | Ox40dce0 575 call =ax 0.078s |
o | p— 3 o ome - |1 P A) -~ —1 1 a3

Scroll Bar "Heat Map” is an overview of hot spots

Click jump to

reference manual

scroll Asm

intel.

9

Timeline Visualizes Thread Behavior

Intel” VTune™ Profiler

& Transitions

Locks & Waits
L B B B e R B o Ea R
RO = 29,86 29.87s 29.88s 29.89¢ 2g.gs T | Ruler Area
e, s e S ST, S e e ﬁFrame
wiinMainCRTStartu. .. Thread
Thread (Ox1364) I Running
_:ﬁ Thread (0x136c) [waits
i= [Thread (0x1374) == Uzer Task
Thread (0x137c) Transition
[Thread (0x1334) Thread Concurrency
MUk Concurrency
Thread Concurrency Fra r Time
Frames over Time il Frame Rate
T Frame & Transition
. Frame Transitian
H Ove rS- Start: 29.858s Duration: 0.017s wWinMMainCRTStartup (Ox12d4) to Thread (0:138¢) (29.899s to 29.899s)
Frame: 72 Sync Object: TBB Scheduler

Frame Domain: Smoke:Framework: executer)
Frame Type: Good
Frame Rate: 59.8242179

= Optional: Use APl to mark frames and user tasks

Object Creation File: taskmanagertbb.cpp
Object Creation Line: 318

» Optional: Add a mark during collection @

ik CPU Time

Basic Hotspots

Advanced Hotspots

L LR LN LR L R LR LR LRy LRI LRI L T T T T T T T

29,945 29,965 29,93 30,055 30,15 30,1
= [3

7 Lzer Task

User Task

Start: 20.958= Duration: 0.018s

CPU Time
94.233472%

Task Type: SmokenFrameWork:execute():: Other
Task End Call Stack: Framework:Execute

T Frame

2 User Task

intel.

10

Command Line Interface

Automate analysis

* Set up the environment variables:
—Windows: <install-dir>\env\vars.bat
—L1nuXx: <install-dir>/env/vars.sh

Help: vtune -help

Copy Command Line to Clipboard x

Command Line

Command line:

Use Ul to setup ERTTTee
1) Configure analysis in Ul @ »« |
2) Press “Command Line...” button G g
3) Copy & paste command ° G @

Great for regression analysis — send results file to developer
Command line results can also be opened in the Ul

intel.

Default Intel® VTune™ Profiler Install Directories

In Intel® oneAPI Base Toolkit:
*Windows: [Program Files]\Intel\oneAPI\vtune\<version>
=Linux: [opt/intel/oneapi/vtune/<version>

Standalone:
*\Windows: [Program Files]\IntelSWTools\VTune Profiler <version>

*Linux: [opt/intel/vtune profiler _version

On Apple* macOS* systems:
= /Applications/Intel VTune Profiler <version>.app

intel.

Interactive Remote Data Collection

Performance analysis of remote systems just got a lot easier

Interactive analysis Command line analysis
1) Configure SSH to a remote Linux* target 1) Run command line remotely on Windows*
2) Choose and run analysis with the Ul or Linux* target
2) Copy results back to host and open in Ul
k=l Configure Analysis
WHERE
L & Remote Linux (SSH)
e @ W ©
Local Host Android Device RHemote Linux Arbitrary Host SSH destination
(ADB) (SSH) (not connected) |
VTune Amplifier installation directory on the remote system
Jtmp/viune_profiler_2022.0

Conveniently use your local Ul to analyze remote systems

intel.

Intel” VTune™ Profiler

Faster, Scalable Code Faster
Get the Data You Need

» Hotspot (Statistical call tree), Call counts (Statistical)

» Thread Profiling — Concurrency and Lock & Waits Analysis
= Cache miss, Bandwidth analysis..."

= GPU Offload and OpenCL™ Kernel Tracing

Find Answers Fast

= View Results on the Source / Assembly

= OpenMP Scalability Analysis, Graphical Frame Analysis

= Filter Out Extraneous Data — Organize Data with Viewpoints
= Visualize Thread & Task Activity on the Timeline

Easy to Use
= No Special Compiles — C, C++, C#, Fortran, Java, Python, ASM
= Visual Studio* Integration or Stand Alone
= Local & Remote Data Collection, Command Line
= Analyze Windows* & Linux* data on macOS

1 Events vary by processor. 2 No data collection on OS X*

Quickly Find Tuning Opportunities

CPU Timew o @] A
Function / Call Stack Effective Time by Utilization Spin | Overhead
@idle @ Poor 0Ok [ideal @Over | 1'ME[Time
FireObject:checkCollision aso7-H. . D O 0s
FireQbject:ProcessFireCollisionsRange 34445 -:_ Os Os
MtWaitForSingleObject 0s 3.406s Os
S std::basic_ifstream-< char,struct stdichar_traits| 3,359 _ Os Os
. OgrexFileSystemArchivesopen 3.359s _ Os Os
CBaseDevice:Present 23355 -:- 0.671s Os
Selected 1 row(s): 1.151s| 0.728s Os| v

See Results On The Source Code

Cooem) e]| || @)] ()] 8 (@) sy oo e =)

Source CPU Time: Total by Utilization
line * Source
D Idle @ Poor [0 Ok [Ideal B Over
81 for (int i = 0; i < mem array i max; i++) U.BUUsl
82 {
83 for {int j = 0; j < mem array_J_max; J++) 4.9365_
84 {
85 mem array [J*mem array_ j_max+i] = *£ill_wval 7.20?5_

Tune OpenMP Scalability

{®) OpenMP Region CPU Usage Histogram

2.55 T T
E 1 1
Fos : -
B . -
2155 g ’7
-_— 0y
w 1
: I - l:
D.5s I
D= 3
1 2 3 4 5
[ok] Ideal Over

Visualize & Filter Data

QOQFC-Ce T00ms _42750ms _47800ms _42850ms _42900ms _ 43830ms _43000ms _43030ms P Frame
Frame Rate

Frame Rate Lk Frame Rate

[WinMainCRTStartup.] F T 16
_ [endthreadex (TID: 91... Thread
& [Lendthreadex (TID: i (@3 Runnin: 9
7 Cendthreadex (TID: 91..) wits

CBatchFilterzLHBatc... v ik CPU Time

PU Usage
[]® CPU Sample

[#] P Tasks
» Transitions

ldud Spin and Overhezd...

intel.

14

Intel® VTune™ Profiler

GPU Profiling

intel. s

Two GPU Analysis types

INntel® V Tune™ Profiler

GPU Offload: Is the offload efficient? ACCELERATORS
» Find inefficiencies in offload

* |dentify if you are CPU or GPU bound @ @

" Findthe kernel to optimize first O?ﬂzl:ld CompStleMedia %Tgrgiﬁi?)ﬁ
» Correlate CPU and GPU activity Hotspots

» Analyze DMA packet execution

GPU Compute/Media Hotspots: Is the GPU kernel efficient?
" |dentify what limits the performance of the kernel
= GPU source/instruction level profiling
* Find memory latency or inefficient kernel algorithms

intel. s

GPU Offload Profiling

Intel® VTune™ Profiler

= Simply follow the sections on the Summary page

GPU Usage @: 0.6% K

Use this section to understand whether the GPU was utilized
properly and which of the engines were utilized. Identify the
amount of gaps in the GPU utilization that potentially could be
loaded with some work. This metric is calculated for the engines
that had at least one piece of work scheduled to them.

(+) GPU Usage
GPU Usage breakdown by GPU engines and work types.

GPU Engine / Packet Type GPU Time (%)

Render and GPGPU 1.146s 0.6% K
Unknown 0.888s 0.5%
GHAL3D 0.249s 0.1%
OpenCL 0.009s 0.0%

Tuning methodology on top of HW metrics

EU Array Stalled/Idle ©: 94.4% K of Elapsed time

Analyze the average value of EU Array Stalled/ldle metric and identify why
EUs were waiting for resources instead of doing computations. This metric is
critical for compute-bound applications. Explore typical reasons for this kind
of inefficiency listed below.

() GPU L3 Bandwidth Bound “: 0.5% of peak value
(>) DRAM Bandwidth Bound : 0.0% of Elapsed time

() Occupancy : 25.8% k& of peak value
Identify too large or too small computing tasks with low occupancy that
make the EU array idle while waiting for the scheduler. Note that frequent
SLM accesses and barriers may affect the maximum possible
occupancy.

(>) Hottest GPU Computing Tasks with Low Occupancy

(3) sampler Busy ": 40.6% of peak value

intel.

17

Timeline Correlates GPU and CPU Activity

Identify too much or Correlate GPU
too little kernel activity with kernels

activity and threads

Platform

O:de ==

Scale Markers:

Thread

] ™ VSync

R
|
o O RO A R RN A X i} || @ [Thread 2

[+ [Running
l#| GPLU Engines Usage
Render and GPGPU

matrix_multiply (T1D: 8559)

GPU Execution Units |#| [] User Tasks

s ey l#| = Computing Task

GPU Computing Threads Dis...

|#| GPU Execution Units
GPU EU Instructions

EU Arrays
GPU Memory Access 18257.378 | | [aiaa Active
L3 <-> GTI Total Band...8697.655 | Ifl E::u d
™ =]

GPU Texture Sampler

|+ GPU Computing Threads
GPU L3 Cache Bandwidth an... ~~ Computing Threads Start
GPU Shared Local Memory ... ¥ GPU EU Instructions
GPU Utilization ~ FPU Utilization

intel.

GPU Hotspots: Aggregated and Overtime Views

Computing Task

Work Size

Computing Task

Global Local

Total Time ¥

Average Time

Instance Count

SIMD Width

» clEnqueueWriteBuffer

» clEnqueueReadBuffer
» [Outside any task]

0.005s

0.000s
Os

0.000s

14

GPU

Slice

SubSlice

GTI
x3
x3 3
Sampler -« 24378
 —
Lt 2
Untyped: 1574 Untyped: 24 084
<« Typed: 0.000 Total 30.961 —— Typed: 0714 —»
SLM: 0.000 SLM: 0.000

Uncore System
eDRAM <> LLC DRAM
10.745 —
-

Thread

func@0x4012e0 (TID: 9440)

GPU Execution Units

GPU Computing Threads Dispatch

GPU EU Instructions

GPU Memory Access 35.557 |

L3 <> GTI Total Bandwidth

GPU Texture Sampler

GPU L3 Cache Bandwidth and Misses

GPU Untyped Memory Access ~ 146.553 |

GPU Typed Memory Access 448487

GPU Shared Local Memory Access

Computing Queue

Intel(R) HD Graphics 530

19

Tune Inefficient Kernel Algorithms

Analyze GPU Kernel Execution

" Find memory latency or inefficient
kernel algorithms

= See the hotspot on the OpenCL™ or
DPC++ source & assembly code

= Analyze DMA packet execution
- Packet Queue Depth histogram

- Packet Duration histogram

= GPU-side call stacks

GPU Compute/Media Hotspots

Assembly i = A% AT | A e [
Source A Source ¢y Estimated GPU Cycles |
254 $ifdef USE_IMAGE STORAGE
257 {/f Bead the node information from the imag
253 consgt ushort inx = (nodeData >> le) * 7; 0.2% |
259 const ushort iny = (nodeData & Oxffff);
260 const float4 bboxes minX = as floatd(read | 0.8% B
261 const floatd bboxes max¥ = as floatd (read | 07% 0
262 const floatd bboxes min¥ = as floatd (read | 0O.7% [|
263 const floatd bboxes max¥ = as floatd (read | O7% []
264 const floatd bboxes minZ = as floatd (read || 0.7% [|
265 const floatd bboxes maxZ = as floatd (read | 0O.7% [|
266 const int4 children = as_int4(read imageui| 07%
2867
268 const intd visit = QBVHMode BBoxIntersect(| 13.1% (NI ;
265 bboxes minX, bboxes maxX,
270 bboxes min¥, bboxes max¥, =
271 bboxes minZ, bboxes maxi,

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos |nte|®

20

Intel® VTune™ Profiler

Memory Analysis

intel =

Intel® Vtune™ Profiler -

What's Using All The Memory?

Memory Consumption Analysis

See What Is Allocating Memory
= Lists top memory consuming functions

and objects

= \/iew source to understand cause
= Filter by time using the memory

consumption timeline

Standard & Custom Allocators
= Recognizes libc malloc/free, memkind

and jemalloc libraries

= Use custom allocators after
markup with ITT Notify API

Languages
= Python*

= | inux*: Native C, C++, Fortran

Native language support is not currently available for Windows*

Top Memory-Consuming Objects

This section lists the most memory-consuming objects in your
application. Optimizing these objects results in improving an overall

application memory consumption.

Memory Object Memory Consumption
dictobject.c:632 (766 B) 766 B
filedoalloc.c:120 (4 KB) 4 KB
iofopen.c:76 (568 B) H68 B
msort.c:224 (1 KB) 1KB
dictobject c632 (3 KB) JKB
[Others] 217 TB

intel.

22

Optimize Memory Access

Memory Access Analysis - Intel® VTune™ Profiler

Tune data structures for performance

= Attribute cache misses to data structures
(not just the code causing the miss)

= Support for customm memory allocators

Optimize NUMA latency & scalability
* True & false sharing optimization
= Auto detect max system bandwidth
= Easier tuning of inter-socket bandwidth

Easier install, Latest processors

= No special drivers required on Linux*

= Intel® Xeon Phi™ processor MCDRAM (high
bandwidth memory) analysis

Top Memory Objects by Latency

This section lists memory objects that introduced the highest latency to the overall application execution.

Memory Object Total Latency Loads Stores LLC Miss Count'
alloc_test.cpp:157 (30 MB) 65.6% 4239327176 4475334256 0
alloc_test.cpp:135 (305 MB) 6.8% 411212336 441,613,248 0
alloc_test.cpp:109 (305 MB) 6.3% 439,213,176 449,613,488 0
alloc_test!l_data_init.436.0.6 (576 B) 5.2% 742422272 676,820,304 0
[vmlinus] 4.6% 173,605,208 116,003,480 0
Others 115 1,533,646,008 1674450232 C

“N/A is applied to non-summable metrics.

Grouping:| Function / Memory Object / Allocation Stack

3

Function / Memaory Object / Stores

LLC Miss Count v

Allocation Stack

ddlriad$omp%parallel_for@2| 40,307,609 ,1...

o triadic (152 MB) 19,200,576

b triad!b { 152 MB) 10,400,312
b [Unknown] 7,200,216
p triad!dolriad (2 MB) 15,200,454
b [Stack] 2,120,063,600
p triad!a (152 MB) 38,135,544 0...
» update blocked averages 6,400,192

Local DRAM Access Count | Remote DRAM Access Count

2439273176 2430472912
1,821,654,648 1,864,855,944
615218456 560,816,824
2,400,072 3,200,096

0 0

0 1,600,048

0 0

2,400,072 0

intel.

23

Memory Access Analysis

Intel® VTune™ Profiler

Tune data structures
for better performance

= Attribute cache misses to data structures

Better Bandwidth Analysis
for Non-Uniform Memory

= See Read & Write contributions
to Total Bandwidth

= Fasier tuning of multi-socket bandwidth

Grouping: | Bandwidth Domain [Bandwidth Utiization Type / Memory Object f Allocation Stack v | (Le| |G %

LALLM LA

CPU Time
ks CPU Time

CPU Time QPI| Outgoing ... DRAM Bandwidth, GB/sec

Seeing total bandwidth can suggest data blocking opportunities
to change a bandwidth bound app into a compute bound app.

(]]
Bandwidth Domain / Bandwidth M e . Average
I . ermory LLC Miss
Utilization Type / Memory Object Bound Loads Stores Count Latency «
/ Allocation Stack {cycles)
EIDRAM, GB/sec 0.657 125,874,377,622 16,061,040... 130,507,830 40
0.750 28,236,084,708 5014875, .. 75304318 &1
stream.c:180 (76 MB) 900,002,700/ 634,009,810 18,301,083 4953
stream.c:179 (76 MB) 1,050,003,150| 667,210,008 33,307,993 437
[+ stream.c:181 (76 MB) 1,434,004,302| 907,213,608 20,101,206 412
Selected 1 row(s): 1.000 126,000,378 21,600,324 300,013 61 w

DRAM Bandwidth, GB/sec

Mk Bandwidth, GB/sec

#"% Read Bandwidth, GB/sec
M™% Write Bandwidth, GB/sec
QPI Outgoing Bandwidth, GB/sec
Uk OPI Bandwidth, GB/sec

intel.

Intel® VTune™ Profiler

Demo

intel =

Design your code for high-performance with

INntel® Advisor

intel.

Intel® Advisor: Vectorize & Thread or Performance Dies

Threaded + Vectorized Can Be Much Faster that Either One Alone

<—\/ectorized &
A Threaded

200
o
w) - . .
S “Automatic” Vectorization Not Enough
5% . Explicit pragmas and optimization often required
w B
c @
S @
= wn
¥ 130
5 5 X
s = Threaded
@ “
[
—
50
/ .
) — Vec;tonzed
. _ - B — s —o <« Serial

2010 2012 2013 2014 2016 2017

Intel® Xeon™ Intel® Xeon™ Processor Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon® Platinum

Processor EE,Q()OO Processor Processor Processor Pru)(:essorS]XX formerly

X5é8omrmer\\; formerly codenamed E5 2600 V2 E5 2600 V3 E5 2600 V4 (\Od@mm@dSkylake
codenamed Sandy Bridge formerly codenamed [ormerIY(::0df:vh¢3rh0d : i Sérv(}r

Westmere lvy Bridge Haswell

Testing Date: Performance results are based on testing by Intel employees as of 2017 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: See Vectorize & Thread or Performance Dies Configurations for 2010-2016 Benchmarks in Backup.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex. Your costs and results may vary.

The Differenceis
Growing with Each
New Generation of

Hardware

intel.

27

http://www.intel.com/PerformanceIndex

Intel® Advisor: Vectorization & Threading is Critical on Modern Hardware

LIBOR Monte Carlo Asian Options

300 T 200 ¢
250 150 Key:

200

150 9 Ox 100 9 Ox Vectorized &

100 <0 _/— Threaded

50 —
0 = 0 Threaded
2007 2009 2010 2012 2013 2014 2016
2007 2009 2010 2012 2013 2014 2016
Vectorized
Black Scholes Monte Carlo America Options
6 150 Serial
5 A 4
4 100
3 28X 60x
50
2
1 - ¢
0
0

2007 2009 2070 2012 2013 2074 2016
2007 2009 2010 2012 2013 2014 2016

Testing Date: Performance results are based on testing by Intel employees as of 2017 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: See Vectorize & Thread or Performance Dies Configurations for 2010-2016 Benchmarks in Backup.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/Performancelndex. Your costs and results may vary.

intel.

28

http://www.intel.com/PerformanceIndex

"Automatic” Vectorization Often Not Enough

A good compiler can still benefit greatly from vectorization optimization

= Compiler will not always vectorize

» Check for Loop Carried Dependencies
using Intel® Advisor

o All clear? Force vectorization.
C++ use: pragma simd, Fortran use: SIMD directive

= Not all vectorization is efficient vectorization

e Stride of 1 is more cache efficient than stride of 2
and greater. Analyze with Intel® Advisor.

» Consider data layout changes
Intel® SIMD Data Layout Templates can help

Benchmarks on prior slides did
not all “auto vectorize.” Compiler
directives were used to force
vectorization and get more
performance.

Arrays of structures are great for
intuitively organizing data, but are
much less efficient than
structures of arrays. Use the
Intel® SIMD Data Layout
Templates (Intel® SDLT) to map
data into a more efficient layout
for vectorization.

intel.

29

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt

Faster Code Faster with Data Driven Design

Intel® Advisor — Vectorization Optimization and Thread Prototyping

= Faster Vectorization Optimization:
» Vectorize where it will pay off most

* Quickly ID what is blocking vectorization
 Tips for effective vectorization
» Safely force compiler vectorization

Optimize memory stride

» Breakthrough for Threading Design:
* Quickly prototype multiple options
* Project scaling on larger systems

* Find synchronization errors before
iImplementing threading

* Design without disrupting development

& Where should | add vectorization and/or threading parallelism? ©

Elspsed time: S444; Vectorized Not Vectorized =~ FILTER: ANl Modules v Al Sources v Q
& Vectorized Loops A
e Self Totsl | Trip »
Function Call Stesand Loop |~ @ @ Vector Issues Tnew | Time | Counts| L00P Type | WhyNo Vectorization?

1+ [loop at sti_algo.h:4740i. []
=W [loop at loopsthcpp:2449..
i M (loop at loopstl.cppd., [
i O [loop st loopsth.cpp:z.. [
i+ O [loop at loopsthepp: 7900, [
 [loop at loopsthecpp:35..

LIES) 3315 LLNLUIE 4]

128~
fidx—
F2x
L~
fx—
i

2

Q17051
¥ 1 Ineffective peeled.. 017051
Q15051
Q020s 1
Q170:1
¥ 1High vector regi.. 0.160s|

Scalability of Maximum Site Gain

Target CPU Count

Q17051 Scalar

Vecto,., Efficiency

B non-vectorzable ! ...

Q1701 1224 Collapie Colfapse AVX
Q15051 12 Vectorized (B AV

Qoe0s! 4 Remainder

QI170:1 S0 Sealar B vectorzation possi...

0.160s1 12 Expand Expand avx [[BRTE v

Loop lterations | Tasks) Modeling

Avg. Number of Iterations Awvq. Iteration (Task)

[Tasks):

Ta03
0.008x
0,040
0.200x

L (T803)
S

25

125x

Part of Intel® Parallel Studio for Windows* and Linux*

Duration:

< 0.0001s
0,008
0.040x
0,200

1x (= 0.0001s)
¥

20y

125

http://intel.ly/advisor-xe

intel. =0

http://intel.ly/advisor-xe

Get Faster Code Faster! Intel® Advisor
Thread Prototyping

Scalability of Maximum 5ite Gain

" Have you:
* Threaded an app, but seen little benefit? ii
* Hit a “scalability barrier"? : N &7 7 .
* Delayed release due to sync. errors? ?g sl g b IR
& O

» Data Driven Threading Design:

* Quickly prototype multiple options
* Project scaling on larger systems
* Find synchronization errors before implementing threading

* Design without disrupting development prototype ideas for parallelism, saving
developer time and effort”

Simon Hammond
Senior Technical Staff

Sandia National Laboratories

Target CPU Count

“Intel® Advisor has allowed us to quickly

intel. =

Get Faster Code Faster! Intel® Advisor
Vectorization Optimization

= Have you: = Data Driven Vectorization:
. . T . » What vectorization will pay off most?
Recompiled for AVXZ with _“ttlf gall * What's blocking vectorization? Why?
* Wondered where to vectorize: - Are my loops vector friendly?
» Recoded intrinsics for new arch.? Will reorganizing data increase
« Struggled with compiler reports? performance?

* |s it safe to just use pragma simd?

"Intel® Advisor's Vectorization Advisor

% e permitted me to focus my work where it
N il bl o el 8 oo 8 8 8 really mattered. When you have only a
R | T wees | s e limited amount of time to spend on
< R T T T optimization, it is invaluable.”
" 47 [loop in muin st roofline.cpp:247) O 6967:@ 69675) Vectorized (Bo... avx [4 122 Insents U.. Fh
« O [loop in main at roofline.cpp:138) O 6940 £.945¢) Scalar & novector dire Fi . . .
<~ [oop n main st roofline.cpp-260) a 3.28%0 32850 Vectorced (Bo... avx BN 4 S0 Glues Clvar 10
7 [locp i mam at roofline.cpp: 199] O 245410 24541 V«tomd(‘ao... AVX ~ = 4 5.14-) .
e g PR v S sk Senior Software Architect
O [locp in main at roofline.cpp:256) 0 ¢10ppo.. 004251 332750 Scalar 0 inner ioop w... .
e [mmmu-m«.cﬁwl O 00805 1242458 Scelar 8 inner loop w... Irish Centre for High_End Comput’ng

intel. =2

Vector Instructions are Dramatically Faster

Multiple arithmetic operations with a single instruction

AYe [o

4.4 1.1 3.1 -85 -13 Sl 75 5.6 -3.2 3.6 4.8

-0.3 -0.5 0.5 0 0.1 0.8 0.9 0.7 1 0.6 -0.5

* These instructions are also referred to as Single Instruction
Multiple Data (SIMD instructions)

intel. =3

Intel® Advanced Vector Extensions (Intel® AVX)

Intel”
AV X

Intel”
AV X2

8x floats

4x doubles

32x bytes

Vector length —

the number of
16x 16-bit shorts elements that
can processed

8x 32-bit integers
4x 64-bit integers

2x 128-bit(!) integer

intel.

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Filter by which loops

are vect

5| Where shou,

orized!

vectorization andfor threading parallelism? \

Trip Counts

Surnrnary m n # Refinerment Reports & Annotation Report | Suitabilit, 1ot

What prevents
vectorization?

| Elapsed time: 54.44s | | Wectarized | | Mot Wectorized | FILTER: A1l Madules Sources o
_ . _ | Trip o Vectorized Loops ~
Function Call Sites and Loops & | @ Vector lssues Self Tirmew | Total Tirne Caunts Loop Type Why Mo Wectorization? - | —
ecta... | Efficiency |‘u"ect|:|r Lo
i [loop at stl_algo.hd 740 in stdutr .. [0.170s 1 01701 Scalar B non-vectorizable loop ins ...
ElE [loop atfoopstl cppi2d4Qin 5234_] ¥ 2 Ineffective peeledfrem ., 017051 01701 124 Collapse Collapse A 4
ir | 0.150s1 0150s1 12 Wectorized (Body) A0 4
120 [logl at loopstl.cpp:2449ins...| [0.020s1 Q.00:1 4 Rernainder
loopstlepp: 7900 inwvas_] | [0.170s1 0.170s1 500 Scalar B wvectorization possible but ..
loopstl.cpp:3509 in s2 ... ‘¢ 1 High vector register ... 0.160s| 0.160s| 12 Expand Expand
loopstlcppi38 in 5279] g 2 Ineffective peeledfrem., 015051 3150s1 1254 Expand Expand
loopstlcppie2aQin s414_] 015051 215051 12 Expand Expand
i st_nurneric.hi247 instd.. [] % 1Assumed dependency.. 0.150s1 215051 49 Scalar B vector dependence preve

Focus on
hot loops

What vectorization
issues do | have?

Which Vector instructions
are being used?

How efficient
is the code?

intel.

35

Intel® Advisor

Roofline Analysis

intel

What is a Roofline Chart?

= A Roofline Chart plots application performance against hardware

|.| m ItatIOﬂS Performance (GFLOPS) A @ « X | [4] Use Single-Threaded Roofs @ =
42167 ‘\?ectur FMA Peak {singlep—dthtsadédfzf#%] 5,GFLE55%
 Where are the bottlenecks? | umEs &2 Vector AdS Peghs (9n0le hugaded; Z2 89 GFLORS
 How much performance is 2 a@@‘?ﬁﬁgj:-»--
T (U i g_qga?:}_ﬂm @ o--- Sc7lar.Add Peak (single-threadedy, 5 37.GTLOPS __
being left on the table? o B P e
. pardd® .
« Which bottlenecks can be = L
. - 5‘19‘9:‘?:""” p—
addressed, and which should s et . .
be addressed? oos 072

Arithmetic Intensity (FLOP/Byte)

* What's the most likely cause?

 What are the next steps?

intel. ¥

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Roofline Metrics

» Roofline is based on FLOPS and Arithmetic Intensity (Al).

) _) SpMV FFTs N-body
* FLOPS: Floating-Point Operations / Second
» Arithmetic Intensity: FLOP / Byte Accessed H
Low Al High Al

Collecting this
information in
Intel® Advisor
requires two
analyses.

intel. 3

Classic vs. Cache-Aware Roofline

= |ntel® Advisor uses the Cache-Aware Roofline model, which has a different definition of

Arithmetic Intensity than the original (“Classic”) model.

Classical Roofline

 Traffic measured from one level of memory (usually DRAM)
« Al may change with data set size
« Al changes as a result of memory optimizations

Cache-Aware Roofline

 Traffic measured from all levels of memory
 Alis tied to the algorithm and will not change with data set size
« Optimization does not change Al*, only the performance

*Compiler optimizations may modify the algorithm, which may change the Al.

intel.

39

Plotting a Roofline Chart

A

/.

FLOPS

>

Arithmetic Intensity
_ o

intel. «

Ultimate Performance Limits

FLOPS

f

Ultimately Ultimately
Memory-Bound Compute-Bound

>
Arithmetic Intensity
FLOP/Byte

intel.

Sub-Roofs and Current Limits

A e e e
cn cn n
FLOPS W Ce \2 Co W3 Co

Vector with FMAs

. Vector

Scalar
>
Arithmetic Intensity

FLOP/Byte

intel. «

The Intel® Advisor Roofline Interface

 Roofs are based on benchmarks run
before the application.

« Roofs can be hidden, highlighted, or
adjusted.

 |ntel® Advisor has size- and color-
coding for dots.

« (Color code by duration or
vectorization status

« (Categories, cutoffs, and visual style
can be modified.

Performance (GFLOPS)

41.79 -

125 49"

0.025
Self Elapsed Time: 18.37/1s

Total Time: 18371 s

El Threshold Value %

*| O [s

| |ye||0w

El Threshold Value E %

+ @ s

| |rc—:d

A@ M o« % [B - | [Use Single-Threaded Roofs| —3
L2 Bandwidth] 67.66 GBfse ™
L3 Bandwidth] 46.43 GB/se
DRAM Bandwidth] 11.33 GB/se
SP Vector FMA Peak []] 86.92 GFLO
SP Vector Add Peak L] L] 4291 GFLO
| DP Vector FMA Peak GFLO
DP Vector Add Peak] 21.36 GFLO
-\ Scalar Add Peak O GFLO
Load.. | | Save.. |
Loop Weight Representation Cancel Default
Size C?Ior
|T|me V|
o o 4 | [green |

intel.

43

|[dentifying Good Optimization Candidates

» Focus optimization effort
where it makes the most
difference.

* Large, red loops have the
most impact.

 Loops far from the upper
roofs have more room to
Improve.

GFLOPs/S
&

A At AP

oo e N
(,_..pﬁ @nﬁ fﬁc.d
LA e CPUCap:FMAs

% CPU Cap: Vector Add

O_ CPU Cap: Scalar Add

.ﬁ},

Arithmetic Intensity (FLOPs/Byte)

intel.

Intel® Advisor

Offload Advisor

intel. 4

Intel® Advisor - Offload Advisor

m

Starting from an optimized
b i N a ry (ru Nnn i N g O] C P U): QrLel) UFH_UAD ADVISUR issslc;rl;fegozzme R 1 8x rEI?;meer of Offloads 1 (F:r;dcs?g of Accelerated 95%

Summary | Offloaded Regions | Non Offloaded Regions | Call Tree | Configuration | Logs

" Helps define which sections Program metrics @ Offloads bounded by @ Gen9 GT2 configuration ... &,

of the code should run on a
. - Compute @ 0% 1.15 GHz frequency @
given accelerator ognaic orees [- ey
|

L3Cache BW® 95% x
Accelerated @ 0.477s LLCBW® 0% 24 EU®
Memory BW @ 0% 5% x
. Target Platform Gend GT2 Time on Host @ 0.100s
* Provides performance Data Transfer® 0% 51208 L3O
. . Number of Offloads @ 1 T T . 0377 21% Invoke Tax @ 0% x
ime on Target @ s S 8 >
p I‘Oj ection on acce I. erators ¢ B Transfer Tax @ 0% 95% 220.8 GB/s L3 bandwidth @
Speed Up for Accelerated Code @ 1.8x ;
Data Transfer Tax @ 0Os G M Dependency @ 0% P i
Amdahl's Law Speed Up @ 1.9x M Trip Count® 0% 24 GB/s E?RAM bandwidth @
Kemel Launch Tax® 0.00000520s Unknovin @ 0% »
Fraction of Accelerated Code @ 95% E . Non Offleaded ® 59 Ir?tegrated GPU®
x
Top offloaded @ Top non offloaded @
Location @ Speed Up @ Bounded By @ Data Location @ Data Execution Time @ Why Not Offloaded @
P P ¥ Transfer @ Transfer @ y
[l Itiply1$ | llel@201 CPU 0680 CPU-0100s Ci t b delled: Outsids
oop in multiply1$SompSparalle!] 680s annot be modelled: Outside
at multiply c202] 1.80X mam GPU 03775 Lel 5L || ZAE llecplnbiz Bibial GPU nia of Marked Regian
i - E— CPU 0.100s
:lg;zr::nﬁ‘ :ZEQT;QMMGOO" Cannot be modelled: Outside

7_Linux_uil cpp°589] GPU nla of Marked Region

intel. 4

Intel® Advisor - Offload Advisor

Find code that can be profitably offloaded

Speed Up for Accelerated 1 8x Number of Offloads @ 1 Fraction of Accelerated 95% Speedup of
Code @ - Code @ accelerated

code 1.8 x

Program metrics @

Original 0.780s

Target Platform Gen9 GT2 Time on Host @ 0 100s
MITEEr 2O Tees(o 1 ™ Time on Target @ 0.377s
Speed Up for Accelerated Code @ 1.6x

Amdahl's Law Speed Up @ 1 Ox I Data Transfer Tax @ Os
Fraction of Accelerated Code 95% Kernel Launch Tax @ 0.00000520s

intel. #

How to Run Intel® Advisor — Offload Advisor

" source <advisor install dir>/advixe-vars.sh

" advixe-python $APM/collect.py advisor project --config gen9 --
/home/test/matrix

" advixe-python $APM/analyze.py advisor project --config gen9 --out-dir
/home/test/analyze

= View the report.html generated (or generate a command-line report) Analyze for a specific

GPU config

intel. =

Compare Acceleration on Different GPUs

Gen9 - Not profitable Gen11 - 1.6x speedup

to offload kernel

Speed Up for Number of Offloads Fraction of Accelerated B Speed Up for Number of Offloads Fraction of Accelerated 0
Accelerated Code @ LB ® E Code @ 0% Accelerated Code @ 1.6x @ 1 Code @ 98%
Program metrics @ .
9 Program metrics @
Original ® 0155 R
Original @ 0.15s
Target Platform Gen9 GT2 Time on Host @ 0.15s
Number of Offloads @ 0 ™ Time on Accelerator @ Os Target Platform Gen11 GT2 Time on Host @ <0.01s 10%
Speed Up for Accelerated Code @ 1.0x I Data Transfer Tax s Number of Offloads @ 1 M Time on Accelerator @ 0.09s
Amdahl's Law Speed Up @ 1.0x Invocation Tax @ 5 el Speed Up for Accelerated Code @ 1.6x 7 Data Transfer Tax 0Os
Fraction of Accelerated Code @ 0% Code Transfer Tax @ s Amdahl's Law Speed Up @ 1.7% Invocation Tax @ <0.01s
Fraction of Accelerated Code @ 98% Code Transfer Tax <0.01s

TS cPU 0.4s Not profitable: Computation 1 60x B CPU 0.14s

Compute 1.15MB
B GpU 0.09s P

Time is high despite the full use

GPU 0.167 : _—
- of Target Device capabilities

intel.

Intel® Advisor

Demo

intel s

Deliver reliable applications with

Intel® Inspector

intel.

Threading, Memory and Persistence Debugger
Intel® Inspector

Threading Debugger Memory Debugger Persistent Memory
Debugger
Debug hard-to-find data races Detect memory leaks, invalid
and deadlocks. accesses, and more. Find persistence errors that

include redundant cache flushes.

intel. >

Race Conditions Are Difficult to Diagnose
They only occur occasionally and are difficult to reproduce

Correct Answer Incorrect Answer

DR R

o) 0

Read count € 0] Read count € 0]

Increment o) Read count € 0

Write count > 1 Increment 0]

Read count € 1 Increment 0

Increment 1 Write count > 1

Write count = 2 Write count = 1

intel.

53

Intel® Inspector
Find & Debug Memory and Threading Errors

Correctness Tools Increase ROl by 12%-21%
* Errors found earlier are less expensive to fix
* Races & deadlocks not easily reproduced

 Memory errors are hard to find without a tool

1411

Data race winvideo.h

find and fix threading errors.ex
find and fix_ threading errors.ex

find and fix_threading_errors.ex
find_and fix threading errors.ex
find and fix threading errors.ex

Faster Diagnosis with Debugger Breakpoints e e
. Breakp0|nt Set JUSt befo re the prob[em OCCUI’S Rea}ég { winvideo.h:201 Ioop_onceA‘ﬁnd_and_fix_threading_errors.exe g_updates
* Examine variables and threads with the debugger 231 //‘ggpdgmy> !
203 if (g_video->updating) { g_skips += up
Write winvideo.h:270 next_frame find_and_fix_threading_errors.exe g_u €s
Debug Persistent Memory Errors D e e g iz
. Missing cache ﬂushes / store fences and more izf fﬁ?ﬂﬁﬁiicﬁlm/ihf?.flﬁzz_iﬁiif:ﬁz;CMd

272

else if(g_handles[l]) ({

find and fix threading_errors.ex
find and fix threading errors.ex

New in 2021 release:
* Preview: Memory and threading errors analysis for DPC++
and OpenMP offloaded codes, executed on CPU target.

1Cost Factors — Square Project Analysis - CERT: U.S. Computer Emergency Readiness Team, and intel
Carnegie Mellon CyLab NIST: National Institute of Standards & Technology: Square Project Results °

54

Debug Memory & Threading Errors

Intel® Inspector

* Find and eliminate errors
 Memory leaks, invalid access...
* Races & deadlocks
 C,C++ and Fortran (or a mix)

= Simple, Reliable, Accurate

No special recompiles
Use any build, any compiler’

1Compilers that follows common OS standards.

Analyzes dynamically generated or linked code
Inspects 3rd party libraries without source
Productive user interface + debugger integration
Command line for automated regression analysis

4 @ Target /A Analysis Type [CollectionLog & .Summary'

Type Sources

Object Size
HP5 @ Mismatched allocation/deallocat... gdivideo.cpp

—

Memory leak find_and_fx_me... 28672

HPT @ Memory leak gdiplusgraphics.h 507904 R New find_a...
=P8 @ Memory leak mlock.c 32 R New tbb_de...
#PI @ Invalid memory access dynamic_link.c... v Fixed find_a...
HP. Ay Memory not deallocated api.cpp; util.cpp ... 10376 R New find_a..

a1l

Descripti...| Source Funct...| Module

1of7 b Al

Object ...| Off... | Variable

Alluca‘t...-ﬁnd_and_fb(_memory_...- opera... -ﬁnd_and_ﬂx_mem w 224 block allocated at find ...

161 unsigned int serial=l: find_and fix memory errors.exe|[s

162 unsigned int mboxsize = sizeof (uns||find_and_fix_memory errors.exe ()
163 unsigned int * local mbox = (unsig|find and fix memc rors.exe
164 find and fix memory errors.exe
165 for (unsigned int i=0;i<=(mboxsize||tbb_debug.dll!local wait for a

Clicking an error instantly displays source
code snippets and the call stack

intel.

55

Productive User Interface Saves Time

Intel” Inspector
INTEL INSPECTOR

@ Detect Memory Problems

Filters let you
focus on a
module, or
error type, or

Select a
problem

Problems 7
| | State M

Filters Sortv o T

Type Sources Severity

set BEpl ® Mismatched allocation/deallocation find_and_fix_memory_... ™ Confirmed : Error 3 item(s] .
FP2 @ Memory leak find_and_fix_memory_... Fr Deferred fi. .. ing 1 itemn(s) jUSt the neW
HPI @ Invalid memory access find_and_fix_memory_... e MNew fi.
i coene T mEmen- 1 errors or...
(5] XY Mernory not deallocated api.cpp: mlock.c; util.c... R Mew fi. p Invalid memory ace 1 item(s)
Memuory not deallocated video.cpmi2 R Mew fi. Memory leak 1 itemi(s)
Memory not deallocated util.cpp:163 R Mew fi. Mermory not deallocated v mis)
Memuory not deallocated apl.cpp:218 Re Mew fi. Mismatched allocation/dealloc... 1item(s)
Memory not deallocated mlock.c:347 B Mew th. e — PrOblem States:
opicPF ! el New, Not Fixed,

1of4 [Al Code Locations: Mismatched allocation/deallocation
Module

find_and_fix_merory_errors.exe

Code a1

snippets
Mismatched deallocation site find_and_fix_mermory_errors.cpp173 operator()

displayed -
for 174

Fixed, Confirmed,
Not a problem,
Deferred,
Regression

Description Source Function Object Size | Offset

drawing->put_pixel(c);
find and fix mem
175 £ (drawing) ; find and fix memory er rors

Selected 178 //delete drawing: find and fix mem
177 thlk debug.dll!local wait £
problem - =

delete instead

M
J/Memory

location site

find_and_fix_memory_errors.cpp:170 operator()

find_and_fix_memory_errors.exe

6a for (int ¥ = r.begin(); v '= r.end():
169 {

170 drawing area * drawing = new drawing area(startx, totaly-y, 3t
171 for (int X = Starti ; X < SCOpX; X++) |

172 color_t c = render one_pixel (%, ¥, local mbox, 3erial, st

+v) | find and fix memory

find and fix me

find and fix me

find and fix memory |

thb debug.dll!local wait £

intel. s

Double Click for Source & Call Stack

Intel” Inspector

r"_'ﬁ'" Mismatched allocation/deallocation INTEL INSPECTOR

& Target Analysis Type || B¢ Collection Log * Summary
Mismatched deallocation site - Thread thread_video (4596) (find_and_fix_memory_errors.exeloperator{) - find_and_fix_memory_errors.cp... ? =

LG L Gl T Tl A= e Xl Disassembly (find_and_fic memeory_errors.exe!led6dE) Call Stack
ey
165 for (unszigned int i=0pi<=({mboxsize/(3izecf(unaigned int)))rit++)

Source code
locations

find_and_fix_memory_errors.exeloperator() - fi

find_and_fix_memory_errors.exelrun_body - p2

dISplayed fOI’ Hf local mbox[1]=0; //Memory Error: C declared arrays go from (el find_and_fix_ memory_errors.exelexecute« class
Selected 167 find_and_fix_memory_errors.exelexecute . narg
183 for (int y = r.begin(): vy != r.end(); ++y) | tbb_debug.dllllocal_wait_for_all - custom_s

2

163 tbb_debug.dilllccal_spawn_root_and_wait - sc

problem {

drawing_area * drawing = new drawing area(3tartx, totaly- tbb_debug.dll'spawn_root_and_wait - schedul

for (int x = startx ; X < stopx; X++) |

Call
Stack

find_and_fi_memory_errors.exelspawn_root_a

color_t o = render one_pixel (x, ¥, local mbox, 3erig . .
-~) - - find_and_fix_memory_errors.exelrun - parallel
drawing->put_pixel (c);

T4 l

drawing area * drawing = new drawing area({startx, totaly find_and_fix_memory_errors.exeloperawgr() - fi

for (int X = 3Cartx ; X < 3TopN; HH+) | find_and_fix_rmemory_errors.exelrun_body - p

72 color t o = render one_pixel (%, ¥, local mbox, 3erig find_and_fix_memory_errors.exelexecute< clas

drawing->put_pixelic); find_and_fix_memory_errors.exelexecute - par
174 1

free{drawing)r /J/Memory Error: use delete instead of frs
1746 //delete drawing;

tbb_debug.dilllocal_wait_for_all - custom_sch
tbb_debug.dilllocal_spawn_root_and_wait - sc

tbb_debug.dillspawn_root_and_wait - schedul

intel. s

Fasy Problem Management

Quickly see new problems and regressions

New Detected by this run
Not Fixed Previously seen error detected by this run
Not a Problem Set by user (tool will not change)

Confirmed Set by user (tool will not change)

Fixed Set by user (tool will change)
g
Regression Error detected with previous state of “Fixed”
rﬁ-'] Detect Memory Problems INTEL INSPECTOR 2017 :r:";u“me
& Target Analysis Type || B2 Collection Log 53 Copy to Clipboard
Problems 7 Explain Problem
Type Sources State Medules Create Problem Report.

Mismatched allocation/deallocation find_and_fix_memory_« = rs.. Fr Confirmed find_and ... Debug This Problem Mot fixed

Memory leak find_and_fix_memory_errov. .. B Deferred find_and ... Confirmed I}

Invalid memery access find_and_fix_memory_errors... Merge States... Fixed

Memory not deallocated api.cpp; mlock.c; util.opp: vi.., find_and ...

Mot a problemr
Deferred

intel.

58

Filtering - Focus on What's Important

Example: See only the errors in one source file

Before — All Errors After — Only errors from one source file

Filters Sort T

ID & Type Sources State Severity Type Sources State Severity a
EIPL @ Mismatched alloc... find_an.. R MNew Error 55 item(s) | Mismatche... find_an... B MNew Error 3 itemi(s)
Mismatched alloc... find_an... Bk Mew Warning 1itemis}” | Memory leak find_an.. Fr Confirmed

Type
EP?2 @ Mismatched alloc.., apicpp R MNew Invalid me... find_an.. F Deferred Invalid memors 2 cess 1 itemis
Type k; (5]

Mismatched alloc... api.cpp Bk Mew Invalid memory access 41 item(s) Memory leak 1 itemn(s)
EPI @ Memory leak api.cpp P Confirmed Memory leak 1 itemi(s) (2) Error count drOpS Mismatched allocation/dealloc... 1 itemi(s)
Memory leak api.cpp P Confirmed Memory not deallocated 11 item(s) Source Al
EP4 @ Mismatched alloc... video.c .. Fr Mot fixed Mismatched allocation/dealloc... 2 itermn(s)
Mismatched alloc... video.c ... Fr Mot fixed Source State —

EPS @ o 2 21 it : :
pi.cpp item(s) Confirmed 1 itemi(s)
(1) FI lter - ShOW on l-y 1 find_and_fix_memory_errors.cpp 3 itemi(s) Deferred 1 item(s]

=P @ one source file | utilcpp [y 2itemes New 1 item(s)
video.cpp N item(s)

m

find_and_fix_memory_errors.cpp 3item(s)

Tip: Set the “Investigated” filter to “Not investigated” while investigating problems.
This removes from view the problems you are done with, leaving only the ones left to investigate.

intel. s

Incrementally Diagnose Memory Growth

Memory Used by Analysis Tool and Target Application
Last recorded memory usage before collection completed: 211 ME

Intel® Inspector
As your app is running...

Memory usage graph —p
plots memory growth

Select a cause of
memory growth

See the code snippet
& call stack

- 1465 MB

- 110 ME

f

3.5 Min now

Problems

d 1

Type

Memery growth
Memery growth
Memery growth
Memuory growth

Memery growth

Sources Modules
gdiplus.dil:0xd 7240

find_and_fix_memeorny_errers.cpp:l63

gdiplus.dll
90108

find_and_fix_memery_errors.exe

find_and_fix_memeory_errors.cppl63 find_and_fix_memory_errors.exe

find_and_fix_memory_errors.cppl63 find_and_fix_memory_errors.exe
find_and_fix_memory_errors.cppili3

find_and_fix_memory_errors.exe
- .

Description

Allocation site find_and_fix_memory_errors.cppilf3 operator()

Source

Module Object Size

find_and_fix_memeory_errors.exe 90108

Object Size State

Fe Mew

™ Mot fixed
F= Mot fixed
F= Mot fixed
F= Mot fixed

16l
162
163
164
165

unsigned int serial=l;
unsigned int mboxsize = gizeof (unsigned int)* (max objectid() +
unsigned int * local mbox = (unaigned int *) malloc (mboxaize):

for (unsigned int i=0;i<=(mboxsize/ {sizeof {unsigned int))):i++

find and fix memory errors
find and fix memory errors.
find and fix memory errors.
find and fix memory errors.
tbb debug.dll!local wait for o

==
£Xg
Xy
XY

intel.

60

Automate Regression Analysis

Command Line Interface
= inspxe-clis the command line:

—Windows: C:\Program Files\Intel\Inspector XE \bin[32]64]\inspxe-cl.exe
—Linux: /opt/intel/inspector xe/bin[32]64]/inspxe-cl

= Help:
inspxe-cl —-help

» Set up command line with GUI
= Command examples:

1l.inspxe-cl -collect-1list
2. inspxe-cl —-collect ti2 -- MyApp.exe

3. inspxe-cl —-report problems

intel.

Break At Just The Right Time

Intel” Inspector - Memory & Thread Debugger

Memory Errors Threading Errors
IDa & Type Sources IDa Type Sources Maodules
P1 @ Mismatched allocation/deallc View Source < Data race wrwden.h View Source
P?_ @ Meur}rleak Edit Source Data race w!nv!deu.h:ﬂ Edit Source
Inwvalid MEMmory access |=_r|a CDFI-]." o Cllpbﬂﬂrd Data race winvideo.h: 2710 |=_r|~a CDFI-]." to Cllpbuard

Invalid memory access Data race winvideo.h:20

HP4 Memory growth Create Problem Report... Datarace winvideo.h:202

P5 A Memory growth Debug This Problem h Datarace winvideo.h:202
PE /o Memory growth

» Break into the debugger just before the error occurs.

Explain Problem Explain Problem

Create Problem Report...

Debug This Problem h

= Examine the variables and threads.

» Diagnose the problem.

intel. =

Productive Memory & Threading Debugger

Intel” Inspector Memory | Threading
Analysis | Analysis

View Context of Problem
Stack
Multiple Contributing Source Locations

Collapse multiple “sightings” to one error
(e.g., memory allocated in a loop, then leaked is 1 error)

Suppression, Filtering, and Workflow Management
Visual Studio* Integration (Windows?*)
Command line for automated tests

N N N N N N

Timeline visualization
Memory Growth during a transaction

v
v
v
v
v
v
v
v
v

AN

Trigger Debugger Breakpoint

intel.

