The CLIO code solves the Conditional Moment Closure transport equations for reacting scalars. These equations are PDE’s in three space directions, one or two sample space directions (mixture fraction, progress variable, two mixture fractions etc), and time. A fractional step approach is taken for the transport in real space, transport in conserved scalar space, and chemistry. Various stiff solvers have been used such as LIBSC, DVODE, VODEPK, LSODE, CHEMEQ, and various chemical schemes can be implemented. CLIO has been interfaced with various CFD codes in RANS and LES such as openFOAM, PRECISE_uns, FLUENT, and STAR-CD
CoE: CoEC
The AVIP code is devoted to the resolution of cold plasmas, as encountered in ignitors such as NRP (Nano-Repetitive Pulse Discharge). It is based on a fluid formulation taking into account the out-of-equilibrium nature of plasmas, and is coupled to a Poisson equation to solve the electric field (using libraries PETSC or MAPHYS) associated to sparking systems. The simulation of plasma requires the resolution of transport equations for electrons, ions and neutrals, including complex chemistry. AVIP is able today to compute 2D streamers and gives results in good agreement with the literature
CoE: CoEC
This website is created and maintained by the project FocusCoE. FocusCoE has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement Nº 823964.