Meso-NH is the non-hydrostatic mesoscale atmospheric model of the French research community. It has been jointly developed by the Laboratoire d’Aérologie (UMR 5560 UPS/CNRS) and by CNRM-GAME (UMR 3589 CNRS/Météo-France). Meso-NH:

  • Incorporates a non-hydrostatic system of equations, for dealing all scales ranging from large (synoptic) to small (large eddy) scales while calculating budgets; 
  • Has a complete set of physical parameterizations, particularly advanced for the representation of clouds and precipitation; 
  • Is coupled to the surface model SURFEX for representing the ground atmosphere interactions by considering different surface types (vegetation, city, ocean, lake); 
  • Allows for a multi-scale approach through a grid-nesting technique; 
  • Is a versatile code, vectorized, parallelized, operating in 1D, 2D or 3D designed to handle real situations as well as academic cases; 
  • Is coupled with a chemistry module (including gas-phase, aerosol, and aqua-phase components) and a lightning module; 
  • Has observation operators that compare directly model output with satellite observations, radar, lidar and GPS.

CoE: EoCoE


waLBerla is a massively parallel simulation framework. It contains efficient, hardware specific compute kernels to get optimal performance on today’s supercomputing architectures. waLBerla employs a block-structured partitioning of the simulation domain including support for grid refinement. These grid data structures make it easy to integrate various data parallel algorithms like Multigrid, CG, or phasefield models. waLBerla uses the lattice Boltzmann method (LBM), which is an alternative to classical Navier-Stokes solvers for computational fluid dynamics simulations. All of the common LBM collision models are implemented (SRT, TRT, MRT). Additionally, a coupling to the rigid body physics engine pe is available. waLBerla is written in C++, which allows for modular and portable software design without having to make any performance trade-offs.

CoE: EoCoE