HYPERstreamHS inherits the core features of the HYPERstream routing scheme recently presented in the work from Piccolroaz et al. (2016), while improving it by means of a dual-layer MPI framework and the inclusion of explicit modelling of streamflow alterations due to Human Systems (hence, the HS suffix to the model’s name). HYPERstream is a multi-scale streamflow routing method based on the Width Function Instantaneous Unit Hydrograph (WFIUH) approach; this approach has been specifically designed for reliably simulating the relevant horizontal hydrological fluxes preserving the geomorphological dispersion of fluxes and thus being able to perform well at different scales, from a single catchment to the meso-scale
CoE: EoCoE
ParFlow is known as a numerical model that simulates the hydrologic cycle from the bedrock to the top of the plant canopy. The original codebase provides an embedded Domain-Specific Language (eDSL) for generic numerical implementations with support for supercomputer environments (distributed memory parallelism), on top of which the hydrologic numerical core has been built. In ParFlow, the newly developed optional GPU acceleration is built directly into the eDSL headers such that, ideally, parallelizing all loops in a single source file requires only a new header file.
CoE: EoCoE
This website is created and maintained by the project FocusCoE. FocusCoE has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement Nº 823964.