SPECFEM3D solves linear seismic wave propagation (elastic, viscoelastic, poroelastic, fluid-solid) and dynamic rupture problems in heterogeneous 3D models. SPECFEM3D also implements imaging and FWI for such complex models based on an L-BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm. Based on the high-order spectral-element (CG) discretization for unstructured hexahedral meshes. Scalable performance at Petascale (runs on the largest machines worldwide: Titan and Summit at Oak Ridge, Piz Daint, CURIE, K computer, etc.)
CoE: ChEESE
SeisSol solves seismic wave propagation (elastic, viscoelastic) and dynamic rupture problems on heterogeneous 3D models. SeisSol uses high-order DG discretization and local time-stepping on unstructured adaptive tetrahedral meshes. Scalable performance at Petascale has been demonstrated up to several thousand nodes (on several supercompers, e.g., Cori, SuperMUC, Hazel Hen, Shaheen, etc.). Earlier work considered offload schemes that scaled to 8000 nodes on the Tianhe-2 supercomputer (Xeon Phi, Knights Corner).
CoE: ChEESE
This website is created and maintained by the project FocusCoE. FocusCoE has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement Nº 823964.