A new Graphical User Interface (GUI) on top of these workflow building blocks (and eventually on top of all the building blocks developed in BioExcel) is being developed: biobb web server. This GUI will ease the usage of BioExcel workflows and tools for a big community that is still not familiar with HPC programming, but have a real interest on this topic, which can include pharmaceutical companies (used to work with GUIs) but also entry level users, whose interest is demonstrated in the high number of registered users (~4000) and pipelines run as of today with web server interfaces such as MDWeb. biobb web server will allow users to run a set of chosen, pre-configured workflows built using BioExcel building blocks, such as a structure quality checking, a structure energy minimization, a complete MD setup, or a complete MD simulation (with length restrictions). The GUI will also provide an additional interactivity to our building blocks. A great example is the possibility to run a quality check of a structure, while at the same time a 3D representation of the molecule is shown in the same interface, highlighting the region of the structure of particular interest. This interactivity can be applied also to the set of analyses generated by the workflows.
Workflows will be submitted and treated by a queue manager, which will serve them in an on-demand processing model performed by Virtual Machines automatically deployed in an Open Nebula OneFlow cloud environment. A direct connection to HPC supercomputing infrastructures to submit long molecular dynamics simulations prepared using the portal will be studied.
biobb server will also be the entry point for BioExcel building blocks. The web page will gather all the information on how to obtain, install and run the building blocks and workflows generated by BioExcel: for developers or experts in the field (github, bioconda, biocontainers, VMs/Cloud) for HPC users (environment modules) and for entry level users (Galaxy, KNIME, web server).
CoE: BioExcel
This website is created and maintained by the project FocusCoE. FocusCoE has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement Nº 823964.