OpenFOAM is a C++ object-oriented numerical simulation platform, which has a modular code-design suitable to be extended with new functionalities through additional libraries. OpenFOAM uses the unstructured grid formulation with a collocated cell-centred variable arrangement, which allows handling arbitrarily complex geometries and it can be applied in different fluid dynamic problems. For turbulent reacting and multi-phase flows, OpenFOAM provides a wide runtime-selectable flexibility in terms of turbulence models, e.g. RANS and LES, with several turbulence closures, and combustion models, such as tabulated chemistry with presumed PDF, ATF (TU Darmstadt in-house extension), and finite-rate chemistry.
Multi-phase problems as liquid sprays can either be treated using a fully coupled Lagrangian point-particle method or within an Eulerian framework as Volume of Fluid Method. OpenFOAM can be easily coupled with external libraries, as for example the Quadrature-based Method of Moments (QMOM) library developed at TU Darmstadt to account for the soot particle size distribution.
CoE: CoEC
This website is created and maintained by the project FocusCoE. FocusCoE has received funding from the European Union’s Horizon 2020 research and innovation programme under the grant agreement Nº 823964.