
Alya - CFD on exascale GPU hardware for
the Wind community.

Herbert OWEN and Dominik ERNST

Barcelona Supercomputing Center (BSC) - FAU University

with help from Filippo Spiga(Nvidia)

& the PSC Toolkit

ISC 2022

Alya - Wind energy - Energy oriented Center of Excellence

EoCoE

Wind is a mature technology but plant-level energy losses —> 20% on flat terrain.

A better understanding of the turbulent flow is needed to reduce these losses, make wind

energy cheaper, and enable widespread adoption.

Exascale simulations will enable an unprecedented understanding of a wind farm's wide range

of scales.

The US is investing 6 million dollars per year in the A2e and Exawind projects. (20X EoCoE-

wind)

Today, to Out-Compute is to Out- Compete. Europe needs to react accordingly.

Alya

HPC-based multi-physics simulation code

Developed at BSC to run efficiently in parallel

supercomputers.

Scalability has been tested up to 100K cores.

Part of UEABS - Unified European Bench Suite

for CPUs & GPUs..

Galerkin discretisation with explicit (RK3/4) treatment of convective and diffusive terms.

EMA - Energy, momentum and angular momentum conserving convective term.

Stabilisation for the p-v interaction coming from Laplacian approximation in Fractional

Step Method.

Physical based SGS modelling (Vreman in current work).

SIMPLE and no user defined numerical parameters.

Numerical Model: Alya - LES

Lehmkuhl el al. A low-dissipation finite element scheme for scale resolving simulations of turbulent flows J. Comput. Phys., 308:51–65, 2019

Numerical Model: Alya - LES

A low-dissipation finite element scheme for scale resolving simulations of turbulent flows, Lehmkuhl et al. submitted to Journal of Computational Physics

For reference see: Comparison between several approaches to simulate the Taylor-Green vortex case, Moulinec et al. PARCFD 2016

EMA approximation:
Q1

t = 5

t = 10

t = 20

EMA approximation:
Q2

Test case: Taylor-Green vortex Re = 1600 *

FRACTIONAL STEP SCHEME - with Runge Scheme time discretization

A low-dissipation finite element scheme for scale resolving simulations of turbulent flows, O. Lehmkuhl, G. Houzeaux, H. Owen, G. Chrysokentis, I. Rodriguez , JCP 2018

Multiply by inverse of Lumped Mass Matrix (cheap)

Other Operations : multiply by scalars; add vectors; apply dirichlet BCs

Multiply by Divergence Matrix — D
Solve Linear System for Laplacian (2nd most costly step)

Multiply by Gradient Matrix — G

For each substep:

Multiply by inverse of Lumped Mass Matrix (cheap)

Obtain assembly process — close to 80% on typical run on MN4

GPU implementation and optimization

GPU2 GPU40 GPU49 GPU51 GPU61

Initial GPU Optimization

email 5 nov 21

GPU71

GPU80

CPU Optimization

using experience

from initial GPU

MAIL 30 nov 21

71) I start from alya/Sources/modules/nastin_private/mod_nsi_element_operations_fast_dev.f90

and remove dt_rho_nsi & mass_rho_nsi.

Thus, 71 is very similar to 40, which you typicaly take as the base. Actually what we have in Alya

currently is slower due to dt_rho_nsi & mass_rho_nsi.

72 & 73 are useless -- I did them again in 74 and 75 but in a better order

74) I send assemble directly in the RHS - That is eliminate elauu

75) I eliminate the call to ker_proper to obtain teh turbulent viscosity.

Up to 75 it is valid for any kind of element.

76) here I start specialising for linear tetrahedra.

use pnode (that is a parameter) instead of mnode. This is the change you found

Just that mini change

77) calculate shape functions and derivatives in a way that is only valid for tetras.

78) gpcar without pgaus. Also gpvol xmile gpgve tampoco xnutu, Aalph, Bbeta G__ij

In finite elements you need to do volume integrals over the elements. The integral is performed

numerically by evaluating over certain gauss points. The number of gauss points depends on the

element. Typically it is equal to the number of nodes. Thus typically pgaus = pnode.

A particular feature of the linear tetrahedra is that the derivatives are constant within the element.

It is linear, the derivatives of a linear function are constant. This does not happen for other elements.

For general elements we have a different value of gpcar at each gauss point. Thus if you program

for general elements gpcar /the cartesian derivatives are of size pgaus.

If you are going to work only with linear tetrahedra it does not make sense to stoer 4 times the same value.

This is the improvement I introduce here.

The other variables depend on gpcar and teh same applies for them.

This change is important for the GPU because it reduces the registers.

79) Here I eliminate gpden & gpvis, the density and viscosity, which are up to now obtained by ker_proper

and set them as parameters. This is a small change to get closer to what I had done in previous version.

In 99% of the cases we run density and vsicosity are constant. Thus this makes a lot of sense.

80) Cleaning to make it as close as possible to what I have in the GPU (51) but still valid on CPU.

GPU91 Final GPU version

CPU4
Final CPU version with some generalisations not still available on GPU -

it uses ker_proper so it could be faster by calculating gmut on the fly

Times for assembly (& properties)

Initial - 2 Final - 80CPU /

91 GPU Improvement

1A100 GPU + 9mpi 9.8 s 0.07 s 140 X

MN4 46 mpi

Intel Xeon Platinum

8160 - Skylake
1.93 s 0.49 s 3.9 X

CPU 5 X faster GPU 7 X faster

Maximum assembly time obtained from Alya’s .log file

5.6 M nodes and

32 M elements

Energy estimates from Top 500

The GPU node we have used is very similar to a Perlmutter node

From top 500 - 2589KW/1536nodes - 1685W per node

We use approx. 1/4 node —> 421 W x 0.07s - 29.5J

…. for 1 MN-IV node —> 511W x 0.49s - 250J

Our assembly is 8.5 times more efficient on the GPU!!

30 (8.5x3.9) times more efficient than our current CPU implementation!!

From Green 500:

Perlmutter 27.374 GFlops/watts MN-IV 3.965 GFlops/watts

Power Efficiency Ratio 6.90 - We are getting 8.5!!!!

Optimization

Thread private instead of 1:VECTOR_SIZE

Specialization 1: Only tetrahedra: FE Shape functions and its derivatives easier
to calculate. Gradient homogeneous for all gauss points -> only one needed

Specialization 2: Obtain elemental RHS directly - only valid for explicit.

Specialization 3: Turbulent viscosity calculated on the fly - nearly for free.

Pnode, Pgaus, Mnode as Fortran parameters

Reduction of registries. Better memory use.

NSYS profile — final version 9 mpi

3 Runge Kutta substesp —> total 71ms

matches 0.07s from previous slide

31ms 20ms 20ms

The total GPU compute time from ncu (nsight compute) is 50ms

with 9 mpi overhead is only 21 ms

NSYS profile— final version 9 mpi

2nd substep 20ms

Blend between compute and copyin/out

Using 9 MPIs allows to hide part of the copyin/out

Copyin/out y mainly velocity and rhsid once we have everything on
the GPU those times will disappear!!!

NSYS profile — final version serial

116ms 59ms 60ms

Total 235ms - much slower than with 9mpi (71ms)

copyin/out become dominant

In any case all copyin/out will disappear when we port ‘the rest’ to GPU

The rest of the code will be much faster on the GPU

NSYS profile — original version serial

‘The rest’ looked much smaller because GPU
computation was very inefficient

{

Multiplication by Gradient and Divergence Matrices
Solve Linear System for Laplacian (2nd most costly step)

What is being done there? Mainly:

Nsight Compute

38% of FP64 Peak — before 0%

Original

Explanation, that I nearly believed

Low order FE not suited for GPUs (still trying to find papers)

High order, Finite Difference and LBM - YES

Alya - linear solver for the pressure

Computational Mechanics solvers have two

main steps:

1) Assembly of a Matrix & RHS

2) Solution of a Linear System

For the solution of the linear System Alya

has used in house developed code until

recently.

Main solvers:

•GMRES

•CG

•Deflated CG
Kiln furnace. Convergence of the DCG solver for the
continuity equation

AMG4PSBLAS

Bolund case

Original mesh with 5.6 M nodes
and

32 M elements

Apply divisor up to 3 times

(X 512)

2850M nodes

16000M elements

Guillaume Houzeaux, Raúl de la Cruz, Herbert Owen, and
Mariano Vázquez. Parallel uniform mesh multiplication applied

to a Navier- Stokes solver. Computers and Fluids

Results for the Bolund case

Excellent weak and algorithmic scalability from original mesh to 3 divisors

cores average
iterations

time per
iteration av. time [ms] av. time w/

Alya CG

Original
mesh 46 6 133 800 1568

1 divisor 368 6 134 802 1198

2 divisors 2944 4.8 150 716 1939

3 divisors 23552 4 159 635 4658

Conclusions and next step

•Low order FE can run efficiently on GPUs !!!!

•Algebraic multigrid - weak scalability up to 16000 million elements

•Put the whole fractional step on the GPU.

•Generalise (other elements, richer physics) without losing too much
efficiency.

•If Europe does not want to be out-computed/out-competed it must react
soon.

Thanks for your attention!

Horizon 2020 grant Nº 824158
The author thankfully acknowledges the computer resources at MareNostrum and the

technical support provided by Barcelona Supercomputing Center (RES-AECT-IM-2021-2-0011)

