Alya - CFD on exascale GPU hardware for
the Wind community.

ISC 2022

(
/

L Q...

(
(
/

Herbert OWEN and Dominik ERNST

AAA A ALA

9. 0.9 O O ¢
X X X

(
¢
(
4

Barcelona Supercomputing Center (BSC) - FAU University

2 9. 0.9 . 9. 0. 9.4

with help from Filippo Spiga(Nvidia)
& the PSC Toolkit

Alya - Wind energy - Energy oriented Center of Excellence

12 m

.

B

B

Wind Energy

LES Modelling of wind flow at Bolund hill

Large Eddy Simulation of wind flow at the Bolund hill,
one of the best known benchmarks for complex terrain.
The visualisation shows three distinct parts of the overall
computational domain, where we visualise the turbulent
flow structures through a volumetric rendering of the
speed (0 to 8 m/s).

Wind is a mature technology but plant-level energy losses —> 20% on flat terrain.

A better understanding of the turbulent flow is needed to reduce these losses, make wind

energy cheaper, and enable widespread adoption.

Exascale simulations will enable an unprecedented understanding of a wind farm's wide range

of scales.

The US is investing 6 million dollars per year in the A2e and Exawind projects. (20X EoCoE-

wind)

Today, to Out-Compute is to Out- Compete. Europe needs to react accordingly.

HPC-based multi-physics simulation code
Developed at BSC to run efficiently in parallel

supercomputers.

Scalability has been tested up to 100K cores.

Part of UEABS - Unified European Bench Suite
for CPUs & GPU:s..

Numerical Model: Alya - LES

Galerkin discretisation with explicit (RK3/4) treatment of convective and diffusive terms.
EMA - Energy, momentum and angular momentum conserving convective term.
Stabilisation for the p-v interaction coming from Laplacian approximation in Fractional
Step Method.

Physical based SGS modelling (Vreman in current work).

SIMPLE and no user defined numerical parameters. «_-

Lehmkuhl el al. A low-dissipation finite element scheme for scale resolving simulations of turbulent flows |. Comput. Phys., 308:51-65,2019

Numerical Model: Alya - LES

Test case: Taylor-Green vortex Re = 1600 *

0.08

EMA approximation:

Ql

0.06

0.04}

Total kinetic energy

0.02}
U

10 15 20
Time [s]

tn -

~--- DNS . ~--DNS
—64° dof: Q2 10} : 64° dof: Q2 1
—128° dof Q2 - 128" dof: Q2

EMA approximation:

>
2
5 o
= 0.08 ¢ e
Q2 g 2 6
— QL
2 0.06 = —
?3 -8 4t ‘t _ :Z()
3 0.04 =
- 2t
0.02 } | | 0 | | |
0 5 10 15 20 0 5 10 15 20
Time [s Time [s|

A low-dissipation finite element scheme for scale resolving simulations of turbulent flows, Lehmkuhl et al. submitted to Journal of Computational Physics
For reference see: Comparison between several approaches to simulate the Taylor-Green vortex case, Moulinec et al. PARCFD 2016

FRACTIONAL STEP SCHEME - with Runge Scheme time discretization

For each substep:

Obtain F_J assembly process — close to 80% on typical run on MN4
. i .
Ut =U" 4+ 8tM~ ZaijFJ, Multiply by inverse of Lumped Mass Matrix (cheap)
. 1 . Multiply by Divergence Matrix — D
DM—lG (cbl) — (gul,* L Rc) , | P y y g |
— Ciot Solve Linear System for Laplacian (2nd most costly step)
U'=U"* — c,-8t£12(d)i) , Multiply by Gradient Matrix — G

Multiply by inverse of Lumped Mass Matrix (cheap)

Other Operations : multiply by scalars; add vectors; apply dirichlet BCs

A low-dissipation finite element scheme for scale resolving simulations of turbulent flows, O. Lehmkuhl, G. Houzeaux, H. Owen, G. Chrysokentis, |. Rodriguez , JCP 2018

PU implementation and optimization

iyl = (€] > 00O =D (€Il =D [= [

I 141 I G PU O 1 1 1 NAME time from .log improvement Clasification Work done
n Itl a’ Ptl m IZatI O n GPU2_17 39,61 code reformats

Alya from master
a0 33,64 1.18 code reformats Reircorporate non optimized minlacp + and g
a1 19,64 1,71 algorithmic changes Incorporate ootimized minlzpp
42-13 18,83 1,04 code reformats Switch to just P1 - Elim nate cal to ker_prope|
44-45 4,35 £33 privatization al t~read private

(l l 7 I 45-49 3,98 1,09 code reformats Cleaning- add and use vreman-

51 3,50 code reformats avoic e mat — abtain d rectly el®u — improven

MAIL 30 nov 21
71) I start from alya/Sources/modules/nastin_private/mod_nsi_element_operations_fast_dev.f90

and remove dt_rho_nsi & mass_rho_nsi. H
ot & mass_rho. email 5 nov 21

Thus, 71 is very similar to 40, which you typicaly take as the base.Actually what we have in Alya
currently is slower due to dt_rho_nsi & mass_rho_nsi.

72 & 73 are useless -- | did them again in 74 and 75 but in a better order

hd hd hd 74) | send assemble directly in the RHS - That is eliminate elauu
Pt I I I l I Zat I o n 75) | eliminate the call to ker_proper to obtain teh turbulent viscosity.

Up to 75 it is valid for any kind of element.

using experience

use pnode (that is a parameter) instead of mnode. This is the change you found

f . ° . I G P Just that mini change
I O I I l I n I t I a U 77) calculate shape functions and derivatives in a way that is only valid for tetras.

78) gpcar without pgaus. Also gpvol xmile gpgve tampoco xnutu,Aalph, Bbeta G__jj
In finite elements you need to do volume integrals over the elements.The integral is performed
numerically by evaluating over certain gauss points. The number of gauss points depends on the
element. Typically it is equal to the number of nodes. Thus typically pgaus = pnode.

A particular feature of the linear tetrahedra is that the derivatives are constant within the element.
It is linear, the derivatives of a linear function are constant. This does not happen for other elements.
For general elements we have a different value of gpcar at each gauss point. Thus if you program
for general elements gpcar /the cartesian derivatives are of size pgaus.
If you are going to work only with linear tetrahedra it does not make sense to stoer 4 times the same value.
This is the improvement | introduce here.
The other variables depend on gpcar and teh same applies for them.

This change is important for the GPU because it reduces the registers.

79) Here | eliminate gpden & gpvis, the density and viscosity, which are up to now obtained by ker_proper
and set them as parameters. This is a small change to get closer to what | had done in previous version.
In 99% of the cases we run density and vsicosity are constant. Thus this makes a lot of sense.

80) Cleaning to make it as close as possible to what | have in the GPU (51) but still valid on CPU.

Final GPU version

~ 2 GPU9|

Final CPU version with some generalisations not still available on GPU -
it uses ker_proper so it could be faster by calculating gmut on the fly

Times for (& properties)

Initial - 2 Final - 80CPU/ Improvement
91 GPU P

1A100 GPU + 9mpi

MN4 46 mpi
Intel Xeon Platinum
8160 - Skylake
5.6 M nodes and

32 M elements
CPU 5 X faster GPU 7 X faster

Maximum assembly time obtained from Alya’s .log file

Energy estimates from Top 500

The GPU node we have used is very similar to a Perlmutter node

From top 500 - 2589KW/|536nodes - |685WV per node
We use approx. |/4 node —> 421W x 0.07s - 29.5]

....for | MN-IV node —>5IIW x 049s - 250]

Our assembly is 8.5 times more efficient on the GPU!!
30 (8.5x3.9) times more efficient than our current CPU implementation!!

From Green 500:
Perimutter 27.374 GFlops/watts MN-IV 3.965 GFlops/watts

Power Efficiency Ratio 6.90 -We are getting 8.5!!!!

Optimization

Thread private instead of |:VECTOR SIZE

:: elvel(VECTOR_DIM, ndime, pnode)
:: elcod(VECTOR_DIM, ndime, pnode)

:: gpvel(V OR_DIM,nd1ime, pgaus

:: gpgve(VECTOR_DIM,ndime,ndime, pgaus)

gprhs(DEF_VECT, idime, igaus) = gprhs(DEF_VECT,idime,igaus) + FACT2X * gravi_nsi(idime) &
— gppor(DEF_VECT,igaus) * gpvel(DEF_VECT, idime, igaus)

Specialization |: Only tetrahedra: FE Shape functions and its derivatives easier
to calculate. Gradient homogeneous for all gauss points -> only one needed

Specialization 2: Obtain elemental RHS directly - only valid for explicit.
Specialization 3: Turbulent viscosity calculated on the fly - nearly for free.
Pnode, Pgaus, Mnode as Fortran parameters

Reduction of registries. Better memory use.

NSYS profile — final version 9 mpi

= Timeline View v & 1x 10 warnings,71 messag

58s - +950ms bbs +50ms +100ms +150ms +200ms +250ms +300ms +350ms +400ms +450ms +500ms +550ms +600ms +650ms +700ms
» CPU (128)
- Processes (19)
v [1228324] Alya.x
» CUDA HW (0000:41:00.0 -
¥ Threads (9)

v v [1228324] Alya.x ~
OpmACC MM'M'I:!'- .GAil'- ; IGI:“ ;
! 1 201N 11 ! 1l
CUDA AP [IRTRRR T I
Profiler overhead
v [1230758] cuda-Evtl~

7 threads hidden... = +

18 processes hidden... — <+

31 ms 20ms 20ms

3 Runge Kutta substesp —> total 7Ims
matches 0.07s from previous slide

The total GPU compute time from ncu (nsight compute) is 50ms
with 9 mpi overhead is only 2| ms

NSYS profile— final version 9 mpi

Q 1x
Ims 4332ms +4333ms 4+334dms +4+33bms +4336ms 4+337/ms +433Bms +4339ms +4+340ms 4+341ms +342ms +4+343ms +344ms +4+345ms +4+346ms +4347/ms +4348ms +4+349ms +350ms +4+351ms

| Wait : nsi... L:I Wait : mod_nsi_selement_operat... || Wait : mod_nsi_element_operations_hh91.f0_ (I Wait : mod_nsi_element_operations_hh91.f0_ | | Wait : nsi_elmope_all.f20:388

l | cuEventSynchro_. J cuStream... | :l cuStreamSynchronize J cuStreamSynchronize (l cuStreamSynchronize Wi cuEventSynchronize |cuStream... |

2nd substep 20ms

Blend between compute and copyin/out
Using 9 MPlIs allows to hide part of the copyin/out

Copyin/out y mainly velocity and rhsid once we have everything on
the GPU those times will disappear!!!

NSYS profile — final version serial

Q 1x /\\ 2 warnings,15 m
@,45 150,5s 150,6s 150, 7 150, 8s 150,9s 151s 151,1s 1561,2s 151,3s 151,4s 151,5s 151,6s 161,75 151,8s 151,9s 152s 152,1s 1562,2s 152, 3s 152,4s 152,55 152,6s 1562, 7s 1

T— - =4 [o

| 1 . —
T T T T T T T T T E T BT T T T T T T T T T TR T T T T T T T T T T T . T T T O R SR HETTSSTrSWFErwa

eallle Qe e

léms 5%ms 60ms

Total 235ms - much slower than with 9mpi (71 ms)
copyin/out become dominant

In any case all copyin/out will disappear when we port ‘the rest’ to GPU
The rest of the code will be much faster on the GPU

NSYS profile — original version serial

35 174s 175s 176s 177 178s 179s 180s 181s 182s 183s 184s

(R
O
—~ i‘i

S

“The rest’ looked much smaller because GPU
computation was very inefficient

What is being done there! Mainly:

Multiplication by Gradient and Divergence Matrices

Solve Linear System for Laplacian (2nd most costly step)

Nsight Compute

38% of FP64 Peak — before 0%
NVIDIA Nsight Compute

The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1.The kernel achieved 0% of this device's fp32 peak
A FP64/32 Utilization performance and 38% of its fp64 peak performance.lf determines that this kernel is fp64 bound,

consider using 32-bit precision floating point operations to improve its performance.

Original

The ratio of peak float (fp32) to double (fp64) performance on this device is 2:1.The kernel achieved 0% of this device's fp32 peak
performance and 0% of its fp64 peak performance

® Roofline Analysis

Explanation, that | nearly believed

Low order FE not suited for GPUs (still trying to find papers)
High order, Finite Difference and LBM - YES

Alya - linear solver for the pressure

Ll

Journal of Computational o
Science)l
Volume 14, May 2016, Pages 15-27 |

Computational Mechanics solvers have two

main steps:
Alya: Multiphysics engineering simulation toward 1) Assembly of a Matrix & RHS

exascale
2) Solution of a Linear System

Mariano Vazquez * °* 2 & Guillaume Houzeaux ?, Seid Koric &, Antoni Artigues ?, Jazmin Aguado-Sierra Ruth
Aris #, Daniel Mira 4, Hadrien Calmet ¢, Fernando Cucchietti ®, Herbert Owen 2, Ahmed Taha €, Evan Dering Burness

“, José Maria Cela ®, Mateo Valero ©

1 f ‘ h=1
o1 i
0.01 l \ Ty H? L] For the solution of the linear System Alya
= i 'j& LT | Y ‘. : :
g TR i \ i) \ \ () \i \ \ \ (Vs “"*1-|"' \ has used in house developed code until
@ 0.0001 | IyEMELIAE Y L Y ML TS
o | 1N] l.‘ KN |_.‘ ‘f:' \‘
" 1e-05:t'|' '\ H ‘i\ ‘ ')" ’. ||. ‘|"' l|", 'u| \[" recently.
106 + | | | 1 " INEEYHANE
| HHH ‘““HH Main solvers:
1e-07 } :
O 0 500 1000 1500 2000 2500 3000 * GMRES
lteration CG
Kiln furnace. Convergence of the DCG solver for the e Deflated CG

continuity equation

AMG4PSBLAS

PSCToolkit (ParaIIeI Sparse Computation Toolkit)

T
/

,""'. N
."’/ |' Ifl_;I ») t J Y
'n,‘- '..-_ (S| | I—’ |~._ J) ’J)
\\I o —-—

o —

% ;’/
\\—/.-'

A software framework for scalable solution of sparse linear systems by
Krylov methods coupled with Algebraic Multigrid (AMG) Preconditioners
on hybrid CPU/NVIDIA-GPU architectures

Available at PSCTOOLKIT | Parallel Sparse Computation Toolkit

Main reference: P. D’Ambra, F. Durastante, S. Filippone, AMG Preconditioners for
Linear Solvers towards Extreme Scale, to appear.
Preprint available at [2006.16147] (arxiv.org)

Bolund case

Original mesh with 5.6 M nodes
and / .
32 M elements o

Guillaume Houzeaux, Raul de la Cruz, Herbert Owen, and
Mariano Vazquez. Parallel uniform mesh multiplication applied
(X S 2) to a Navier- Stokes solver. Computers and Fluids

2850M nodes
| 6000M elements

Apply divisor up to 3 times

Results for the Bolund case

Excellent weak and algorithmic scalability from original mesh to 3 divisors

average time per av. time w/

av. time [ms]

iterations iteration Alya CG

Original

mesh 1568

1 divisor 1198
2 divisors | | | | 1939

3 divisors 7 | 4658

Conclusions and next step

*Low order FE can run efficiently on GPUs !!!!

*Algebraic multigrid - weak scalability up to 16000 million elements

*Put the whole fractional step on the GPU.

*Generalise (other elements, richer physics) without losing too much
efficiency.

*If Europe does not want to be out-computed/out-competed it must react
soon.

Thanks for your attention!

Rl
-

*
* *

- *
L

European
Commission

. . The author thankfully acknowledges the computer resources at MareNostrum and the
Horizon 2020 grant N® 824158 technical support provided by Barcelona Supercomputing Center (RES-AECT-IM-2021-2-0011)

